\[\theta < 0 < \infty \]

prop. dist. \(f(\theta; x, y) \) target \(\theta^* \)

\[p(\theta^*|y) \]

1. accept all uphill moves:

\[\frac{p(\theta^*|y)}{p(\theta_t|y)} > 1 \] accept

2. accept some of the downhill moves:

\[\frac{p(\theta^*|y)}{p(\theta_t|y)} < 1 \]

\[\alpha_n = \min \left(\frac{p(\theta^*|y)}{p(\theta_t|y)}, 1 \right) \] accept downhill move w.p. \(\alpha_n \)

0-2 calculate \(\alpha_n = \min \left(\frac{p(\theta^*|y)}{p(\theta_t|y)}, 1 \right) \)
accept: $\theta_{t+1} = \theta^*$

don't accept: $\theta_{t+1} = \theta_t$

intention

PD (large σ^*)

low acceptance rate

high positive autocorrelation
high acceptance

\[\mu_x (\frac{\sigma_{\text{win}}}{\sigma_{\text{x}}}) \quad \text{some} \quad \theta + \]

\[\text{sticky} \]

\[\text{Iteration} \]

\[\text{high positive autocorrelation} \]

\[\text{xcorr} \]