Required Problems

1. Suppose you are observing the speeds of cars on Highway 1, and you model them as iid normal with unknown mean μ and unknown precision τ. (When there is not traffic, this is not an unreasonable model.) Suppose you use the standard noninformative prior, $f(\mu, \tau) \propto \frac{1}{\tau}$ (this is like choosing $k = \alpha = \beta = 0$ in the parameterization from class). Suppose you observe a random sample of 40 cars and find a sample mean of $\bar{y} = 62$ mph and a sample variance of $s^2 = 72$.

(a) Find the joint posterior distribution of μ and τ by finding the posterior marginal for $\tau|y$ and the posterior conditional distribution for $\mu|\tau, y$. You can use the results from class, rather than re-deriving any of the equations.

(b) Find the posterior probability that a new observation will be larger than 65. (Recall that the posterior predictive distribution is a location-scale t, so if you take 65, subtract the location parameter, and divide by the scale parameter (the square root of the variance parameter), you can then use R to find the probability that a standard t with the appropriate degrees of freedom is larger than that standarized value.)

2. Recall that the density for the Pareto distribution is

$$f(x|\alpha, \beta) = \alpha \beta^\alpha x^{-(\alpha+1)} I_{x \geq \beta}$$

(a) Show that the inverse CDF for the Pareto is $F^{-1}(p) = \beta (1 - p)^{-1/\alpha}$.

(b) Find the mean and variance of a Pareto distribution with parameters $\alpha = 4$ and $\beta = 5$ by Monte Carlo estimation (generate samples using the inverse CDF method), and compare them to the theoretical values of $E[X] = \frac{\alpha \beta}{\alpha - 1}$ and $Var(X) = \frac{(\alpha - 2)\beta^2}{(\alpha - 1)^2} (\alpha - 3)$.

(c) Define a new distribution by $Y = \log(X - \beta)$ where X has a Pareto(α, β) distribution (and log is the natural log). Estimate the mean and variance of this distribution for $\alpha = 4$ and $\beta = 5$ (transform your sample from the previous part).

Optional Problem

3. Show that for a normal likelihood with unknown mean and unknown precision (or variance), the marginal posterior distribution for the mean is a scaled t. You will probably want to use the form for the joint posterior that has the square already completed for μ. Note that the density function for a scaled $t_{\nu}(\mu, \sigma^2)$ is

$$f(x|\nu, \mu, \sigma^2) = \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\nu \pi \sigma^2}} \left[1 + \frac{1}{\nu \sigma^2} (x - \mu)^2 \right]^{-(\nu + 1)/2}$$