1st catch-up class Mon 7 Mar, 8.30-9.40 am, JB 156; then regular class as usual Mon 7 Mar, 2-3.40 pm.

Fact: If $\hat{\theta}$ (dimension k) is the mle of θ, then for any reasonable function f of θ, the mle of $f(\theta)$ is $f(\hat{\theta})$ (invariance of mle) (Hw 4)

Wiburgs should be on 3-4 machine in JB 340 (now or soon)

Apologies for missing office hr this AM; rescheduled to 9.40-10.40 am Mon

Final due date for hwk 4: Fri 11 Mar
\[E = C \]

- \(E^{st} \) effect
- \(E^{st} = C + \Delta \) additive effect

slope 2, intercept \(\Delta \)
$E = c (1 + A)$

Slope $(1 + A)$, intercept 0

γ: univariate outcome
x: predictor

Regression formulation
$(y_i, \tau_i) \overset{\text{indep}}{\sim} \text{Poisson} (\tau_i) \quad (i = 1, \ldots, n)$

$\log(\tau_i) = \gamma_0 + \gamma_1 x_i + \delta_2 z_{i2} + \ldots + \delta_k z_{ik}$

Supposedly causal factor $(S \subset F)$

$\epsilon_i \sim N(0, \sigma^2)$

Random effects

Potential confounders and confounding factors (PCFs)

Randomization is expected to have uncorrelated $(\delta_2, \ldots, \delta_k)$ with τ_i