The Exponential Family (continued)

Definition (e.g., Bernardo and Smith, 1994): Given data y_1 (a sample of size 1) and a parameter vector $\theta = (\theta_1, \ldots, \theta_k)$, the (marginal) sampling distribution $p(y_1|\theta)$ belongs to the **k-dimensional exponential family** if it can be expressed in the form

$$p(y_1|\theta) = c f_1(y_1) g_1(\theta) \exp \left[\sum_{j=1}^{k} \phi_j(\theta) h_j(y_1) \right]$$

(51)

for $y_1 \in \mathcal{Y}$ and 0 otherwise; if \mathcal{Y} doesn't depend on θ the family is called **regular**.

The vector $[\phi_1(\theta), \ldots, \phi_k(\theta)]$ in (51) is called the **natural parameterization** of the exponential family.

In this case the **joint distribution** $p(y|\theta)$ of a sample $y = (y_1, \ldots, y_n)$ of size n which is conditionally IID from (51) (which also defines, as usual, the **likelihood function** $l(\theta|y)$) will be

$$p(y|\theta) = l(\theta|y) = \prod_{i=1}^{n} p(y_i|\theta)$$

(52)

$$= c \left[\prod_{i=1}^{n} f_1(y_i) \right] [g_1(\theta)]^n \exp \left[\sum_{j=1}^{k} \phi_j(\theta) \sum_{i=1}^{n} h_j(y_i) \right].$$
The Exponential Family (continued)

This leads to another way to define the exponential family: in (52) take \(f(y) = \prod_{i=1}^{n} f_1(y_i) \) and \(g(\theta) = [g_1(\theta)]^n \) to yield

Definition: Given data \(y = (y_1, \ldots, y_n) \) (a conditionally IID sample of size \(n \)) and a parameter vector \(\theta = (\theta_1, \ldots, \theta_k) \), the (joint) sampling distribution \(p(y|\theta) \) belongs to the **k-dimensional exponential family** if it can be expressed in the form

\[
p(y|\theta) = c \ f(y) \ g(\theta) \ \exp \left[\sum_{j=1}^{k} \phi_j(\theta) \ \sum_{i=1}^{n} h_j(y_i) \right].
\]

Either way you can see that \(\{\sum_{i=1}^{n} h_1(y_i), \ldots, \sum_{i=1}^{n} h_k(y_i)\} \) is a set of **sufficient** statistics for \(\theta \) under this sampling model, because the likelihood \(l(\theta|y) \) depends on \(y \) only through the values of \(\{h_1, \ldots, h_k\} \).

Now here's the theorem about the conjugate prior: if the likelihood \(l(\theta|y) \) is of the form (53), then in searching for a **conjugate** prior \(p(\theta) \)—that is, a prior of the same functional form as the likelihood—you can see directly what will work:

\[
p(\theta) = c \ g(\theta)^{\tau_0} \ \exp \left[\sum_{j=1}^{k} \phi_j(\theta) \ \tau_j \right],
\]

for some \(\tau = (\tau_0, \ldots, \tau_k) \).

With this choice the **posterior** for \(\theta \) will be

\[
p(\theta|y) = c \ g(\theta)^{1+\tau_0} \ \exp \left\{ \sum_{j=1}^{k} \phi_j(\theta) \left[\tau_j + \sum_{i=1}^{n} h_j(y_i) \right] \right\},
\]

which is indeed of the **same form** (in \(\theta \)) as (53).
The Exponential Family (continued)

As a first example, with \(s = \sum_{i=1}^{n} y_i \), the Bernoulli/binomial likelihood in (41) can be written

\[
l(\theta | y) = c \theta^s (1 - \theta)^{n-s}
\]

\[
= c (1 - \theta)^n \left(\frac{\theta}{1 - \theta} \right)^s
\]

\[
= c (1 - \theta)^n \exp \left[s \log \left(\frac{\theta}{1 - \theta} \right) \right],
\]

which shows (a) that this sampling distribution is a member of the exponential family with \(k = 1, \ g(\theta) = (1 - \theta)^n, \ \phi_1(\theta) = \log \left(\frac{\theta}{1 - \theta} \right) \) (NB the natural parameterization, and the basis of logistic regression), and \(h_1(y_i) = y_i \), and (b) that \(\sum_{i=1}^{n} h_1(y_i) = s \) is sufficient for \(\theta \).

Then (54) says that the conjugate prior for the Bernoulli/binomial likelihood is

\[
p(\theta) = c (1 - \theta)^{n\tau_0} \exp \left[\tau_1 \log \left(\frac{\theta}{1 - \theta} \right) \right]
\]

\[
= c \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = \text{Beta}(\alpha, \beta)
\] (57)

for some \(\alpha \) and \(\beta \), as we’ve already seen is true.
2.8 Integer-Valued Outcomes

Case Study: Hospital length of stay for birth of premature babies. As a small part of a study I worked on at the Rand Corporation in the late 1980s, we obtained data on a random sample of \(n = 14 \) women who came to a hospital in Santa Monica, CA, in 1988 to give birth to premature babies.

One (integer-valued) outcome of interest was \(y = \text{length of hospital stay} \) (LOS).

Here's a preliminary look at the data in an excellent freeware statistical package called \(\text{R} \) (see http://www.r-project.org/ for more details and instructions on how to download the package).

```r
rosalind 77> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or ‘help.start()’ for a HTML browser interface to help.
Type ‘q()’ to quit R.

[Previously saved workspace restored]

> y

[1] 1 2 1 1 1 2 2 4 3 6 2 1 3 0

> sort(y)

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> table(y)

0 1 2 3 4 6
1 5 4 2 1 1
One possible model for non-negative integer-valued outcomes is the Poisson distribution

\[ P(Y_i = y_i) = \begin{cases} \frac{\lambda^y e^{-\lambda}}{y!} & \text{for } y = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases} \]  

for some \( \lambda > 0 \).

As usual Maple can be used to work out the mean and variance of this distribution:

rosalind 78> maple
> assume( lambda > 0 );

> p := ( y, lambda ) -> lambda^y * exp(- lambda ) / y!;

    y
lambda exp(-lambda)

    p := (y, lambda) -> -----------------

    y!

> simplify( sum( p( y, lambda ), y = 0 .. infinity ) );

1

> simplify( sum( y * p( y, lambda ), y = 0 .. infinity ) );

lambda

> simplify( sum( ( y - lambda )^2 * p( y, lambda ),
    y = 0 .. infinity ) );

lambda

**Thus** if \( Y \sim \text{Poisson}(\lambda), E(Y) = V(Y) = \lambda \), which people sometimes express by saying that the **variance-to-mean ratio** (VTMR) for the Poisson is 1.

R can be used to check informally whether the Poisson is a **good fit** to the LOS data:

rosalind 77> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> dpois( 0:7, mean( y ) )
[1] 0.126005645 0.261011693 0.270333539 0.186658872 0.096662630
[6] 0.040045947 0.013825386 0.004091186

> print( n <- length( y ) )

[1] 14

> table( y ) / n

0 1 2 3 4 6
0.07142857 0.35714286 0.28571429 0.14285714 0.07142857 0.07142857
Poisson Modeling (continued)

\[
\begin{align*}
&\text{cbind( c( dpois( 0:6, mean( y ) ),}
\\&\text{1 - sum( dpois( 0:6, mean( y ) ) ) ),}
\\&\text{apply( outer( y, 0:7, '==' ), 2, sum ) / n )}
\end{align*}
\]

\[
\begin{array}{ll}
[1,] & 0.126005645 0.07142857 \\
[2,] & 0.261011693 0.35714286 \\
[3,] & 0.270333539 0.28571429 \\
[4,] & 0.186658872 0.14285714 \\
[5,] & 0.096662630 0.07142857 \\
[6,] & 0.040045947 0.00000000 \\
[7,] & 0.013825386 0.07142857 \\
[8,] & 0.005456286 0.00000000
\end{array}
\]

The second column in the above table records the values of the **Poisson probabilities** for \( \lambda = 2.07 \), the mean of the \( y_i \), and the third column is the **empirical relative frequencies**; informally the fit is reasonably good.

Another **informal check** comes from the fact that the sample mean and variance are 2.07 and 1.542^2 ÷ 2.38, which are reasonably close.

**Exchangeability.** As with the AMI mortality case study, before the data arrive I recognize that my uncertainty about the \( Y_i \) is exchangeable, and you would expect from a generalization of the binary-outcomes version of de Finetti’s Theorem that the structure of a **plausible Bayesian model** for the data would then be

\[
\begin{align*}
\theta & \sim p(\theta) \quad \text{(prior)} \\
(Y_i|\theta) & \overset{\text{IID}}{\sim} F(\theta) \quad \text{(likelihood)},
\end{align*}
\]

where \( \theta \) is some parameter (vector) and \( F(\theta) \) is some **parametric family of distributions** on the non-negative integers indexed by \( \theta \).
Poisson Modeling (continued)

Thus, in view of the preliminary examination of the data above, a **plausible Bayesian model** for these data is

\[ \lambda \sim p(\lambda) \quad \text{(prior)} \tag{60} \]

\[ (Y_i|\lambda) \overset{\text{IID}}{\sim} \text{Poisson}(\lambda) \quad \text{(likelihood)}, \]

where \( \lambda \) is a **positive real number**.

**NB** (1) This approach to model-building involves a form of **cheating**, because we've **used the data twice**: once to choose the model, and again to draw conclusions conditional on the chosen model.

The result in general can be a failure to **assess** and **propagate model uncertainty** (Draper 1995).

(2) **Frequentist** modeling often employs this **same kind of cheating** in specifying the likelihood function.

(3) There are two Bayesian ways out of this dilemma: **cross-validation** and **Bayesian non-parametric/semi-parametric** methods.

The latter is beyond the scope of this course; I'll give examples of the former later.

To get more practice with Bayesian calculations I'm going to **ignore the model uncertainty problem for now** and pretend that somehow we knew that the Poisson was a good choice.

**The likelihood function** in model (60) is

\[ l(\lambda|y) = c p_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n|\lambda) \]

\[ = c \prod_{i=1}^{n} p_{Y_i}(y_i|\lambda) \tag{61} \]

\[ = c \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} \]

\[ = c \lambda^s e^{-n\lambda}, \]
The Conjugate Prior

where \( y = (y_1, \ldots, y_n) \) and \( s = \sum_{i=1}^{n} y_i \); here \((\prod_{i=1}^{n} y_i!)^{-1}\) can be absorbed into the generic positive \( c \) because it doesn’t involve \( \lambda \).

Thus (as was true in the Bernoulli model) \( s = \sum_{i=1}^{n} y_i \) is sufficient for \( \lambda \) in the Poisson model, and we can write \( l(\lambda|s) \) instead of \( l(\lambda|y) \) if we want.

If a conjugate prior \( p(\lambda) \) for \( \lambda \) exists it must be such that the product \( p(\lambda) l(\lambda|s) \) has the same mathematical form as \( p(\lambda) \).

Examination of (61) reveals that the same trick works here as with Bernoulli data, namely taking the prior to be of the same form as the likelihood:

\[
p(\lambda) = c \lambda^{\alpha-1} e^{-\beta \lambda}
\]

(62)

for some \( \alpha > 0, \beta > 0 \)—this is the Gamma distribution \( \lambda \sim \Gamma(\alpha, \beta) \) for \( \lambda > 0 \) (see Gelman et al. Appendix A).

As usual Maple can work out the normalizing constant:

rosalind 80> maple

> assume( lambda > 0, alpha > 0, beta > 0 );

> p1 := ( lambda, alpha, beta ) -> lambda^( alpha - 1 ) * exp( - beta * lambda );

(\(\alpha - 1\))

\[
p1 := (\text{lambda}, \text{alpha}, \text{beta}) \rightarrow \text{lambda}^{(\text{alpha} - 1)} \exp(-\beta \text{lambda})
\]

> simplify( integrate( p1( lambda, alpha, beta ), lambda = 0 .. infinity ) );

\(\text{(-alpha}^\sim\text{) beta}^\sim\text{GAMMA(alpha}^\sim\text{)\)}}
The Gamma Distribution

Thus \( c^{-1} = \beta^{-\alpha} \Gamma(\alpha) \) and the proper definition of the Gamma distribution is

\[
\text{If } \lambda \sim \Gamma(\alpha, \beta) \text{ then } p(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \tag{63}
\]

for \( \alpha > 0, \beta > 0 \).

As usual Maple can also be used to explore the behavior of this family of distributions as a function of its inputs \( \alpha \) and \( \beta \):

\[
p := (\text{lambda, alpha, beta}) \rightarrow \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}/\text{GAMMA}(\alpha);
\]

\[
p := \text{lambda, alpha, beta} \rightarrow \frac{\beta^\alpha \lambda^{\alpha-1} e^{-\beta \lambda}}{\text{GAMMA}(\alpha)}
\]

\[
> \text{plotsetup( x11 );}
\]

\[
> \text{plot( \{ p(\text{lambda, 1, 1 }), p(\text{lambda, 2, 1 }), p(\text{lambda, 3, 1 }), p(\text{lambda, 6, 1 }) \}, \text{lambda = 0 .. 14, color = black );}
\]

\[
\alpha \text{ evidently controls the shape of the Gamma family.}
\]
Gamma Distribution (continued)

When $\alpha = 1$ the Gamma distributions have a special form which you'll probably recognize—they're the exponential distributions $\mathcal{E}(\beta)$: for $\beta > 0$

$$\text{If } \lambda \sim \mathcal{E}(\beta) \text{ then } p(\lambda) = \begin{cases} \beta e^{-\beta \lambda} & \text{for } \lambda > 0 \\ 0 & \text{otherwise} \end{cases}.$$ (64)

> plot( { p(lambda, 2, 1), p(lambda, 2, 2), p(lambda, 2, 3) }, lambda = 0 .. 7, color = black );

In the Gamma family the parameter $\beta$ controls the spread or scale of the distribution.

**Definition** Given a random quantity $y$ whose density $p(y|\sigma)$ depends on a parameter $\sigma > 0$, if it's possible to express $p(y|\sigma)$ in the form $\frac{1}{\sigma} f(y_{\sigma})$, where $f(\cdot)$ is a function which does not depend on $y$ or $\sigma$, then $\sigma$ is called a scale parameter for the parametric family $p$. 

66
Gamma Distribution (continued)

Letting $f(t) = e^{-t}$ and taking $\sigma = \frac{1}{\beta}$, you can see that the Gamma family can be expressed in this way, so $\frac{1}{\beta}$ is a scale parameter for the Gamma distribution.

As usual Maple can also work out the mean and variance of this family:

\[ \text{> simplify( integrate( p( lambda, alpha, beta ), lambda = 0 .. infinity ) ));} \]

\[ 1 \]

\[ \text{> simplify( integrate( lambda * p( lambda, alpha, beta ), lambda = 0 .. infinity ) ));} \]

\[ \frac{\alpha^{\lambda} \beta^{-\lambda}}{\beta^{\lambda}} \]

\[ \text{> simplify( integrate( ( lambda - alpha / beta )^2 * p( lambda, alpha, beta ), lambda = 0 .. infinity ) ));} \]

\[ \frac{\alpha^{\lambda} \beta^{-\lambda}}{2 \beta^{\lambda}} \]

Thus if $\lambda \sim \Gamma(\alpha, \beta)$ then $E(\lambda) = \frac{\alpha}{\beta}$ and $V(\lambda) = \frac{\alpha}{\beta^2}$.

Conjugate updating is now straightforward: with $y = (y_1, \ldots, y_n)$ and $s = \sum_{i=1}^{n} y_i$, by Bayes' Theorem

\[ p(\lambda|y) = c p(\lambda) l(\lambda|y) \]

\[ = c \left( \frac{1}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\lambda} \right) \left( \frac{1}{\Gamma(s)} \lambda^{s-1} e^{-s\lambda} \right) \]

\[ = c \lambda^{(\alpha+s)-1} e^{-(\beta+s+1)\lambda}, \quad \text{(65)} \]

and the resulting distribution is just $\Gamma(\alpha + s, \beta + n)$.  

Conjugate Poisson Analysis

This can be summarized as follows:

\[
\begin{cases}
(l|\alpha, \beta) \sim \Gamma(\alpha, \beta) \\
(Y_i|\lambda) \overset{iid}{\sim} \text{Poisson}(\lambda),
\end{cases}
\]
\[i = 1, \ldots, n\]  \\
\rightarrow (l|s) \sim \Gamma(\alpha^*, \beta^*), \tag{66}
\]

where \((\alpha^*, \beta^*) = (\alpha + s, \beta + n)\) and \(s = \sum_{i=1}^{n} y_i\) is a sufficient statistic for \(l\) in this model.

The posterior mean of \(l\) here is evidently \(\frac{\alpha + s}{\beta + n}\), and the prior and data means are \(\frac{\alpha}{\beta}\) and \(\bar{y} = \frac{s}{n}\), so (as was the case in the Bernoulli model) the posterior mean can be written as a weighted average of the prior and data means:

\[
\frac{\alpha + s}{\beta + n} = \left(\frac{\beta}{\beta + n}\right) \left(\frac{\alpha}{\beta}\right) + \left(\frac{n}{\beta + n}\right) \left(\frac{s}{n}\right). \tag{67}
\]

Thus the prior sample size \(n_0\) in this model is just \(\beta\) (which makes sense given that \(\frac{1}{\beta}\) is the scale parameter for the Gamma distribution), and the prior acts like a dataset consisting of \(\beta\) observations with mean \(\frac{\alpha}{\beta}\).

**LOS data analysis.** Suppose that, before the current data set is scheduled to arrive, I know little about the mean length of hospital stay of women giving birth to premature babies.

Then for my prior on \(l\) I’d like to specify a member of the \(\Gamma(\alpha, \beta)\) family which is relatively flat in the region in which the likelihood function is appreciable.
The $\Gamma(\epsilon, \epsilon)$ Prior

A convenient and fairly all-purpose default choice of this type is $\Gamma(\epsilon, \epsilon)$ for some small $\epsilon$ like 0.001.

When used as a prior this distribution has prior sample size $\epsilon$; it also has mean 1, but that usually doesn’t matter when $\epsilon$ is tiny.

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, color = black );

![Graph of Gamma distribution with parameters $\epsilon = 0.001$ and $\epsilon = 0.001$.]

With the LOS data $s = 29$ and $n = 14$, so the likelihood for $\lambda$ is like a $\Gamma(30, 14)$ density, which has mean $\frac{30}{14} \approx 2.14$ and $\text{SD} \sqrt{\frac{30}{14^2}} \approx 0.39$.

Thus by the Empirical Rule the likelihood is appreciable in the range ($\text{mean} \pm 3 \text{SD} = 2.14 \pm 1.17 = 1.0, 3.3$), and you can see from the plot above that the prior is indeed relatively flat in this region.

From the Bayesian updating in (66), with a $\Gamma(0.001, 0.001)$ prior the posterior is $\Gamma(29.001, 14.001)$. 
LOS Data Analysis

It's useful, in summarizing the updating from prior through likelihood to posterior, to make a table that records measures of center and spread at each point along the way.

For example, the $\Gamma(0.001, 0.001)$ prior, when regarded (as usual) as a density for $\lambda$, has mean $1.000$ and SD
\[
\sqrt{1000} \approx 31.6 \text{ (i.e., informally, as far as we're concerned, before the data arrive $\lambda$ could be anywhere between 0 and (say) 100).}
\]

And the $\Gamma(29.001, 14.001)$ posterior has mean
\[
\frac{29.001}{14.001} \approx 2.071 \text{ and SD } \sqrt{\frac{29.001}{14.001^2}} \approx 0.385, \text{ so after the data have arrived we know quite a bit more than before.}
\]

There are two main ways to summarize the likelihood—Fisher's approach based on maximizing it, and the Bayesian approach based on regarding it as a density and integrating it—and it's instructive to compute them both and compare.

The likelihood-integrating approach treats the $\Gamma(30, 14)$ likelihood as a density for $\lambda$, with mean $\frac{30}{14} \approx 2.143$ and SD
\[
\sqrt{\frac{30}{14^2}} \approx 0.391.
\]

As for the likelihood-maximizing approach, from (61) the log likelihood function is
\[
ll(\lambda|y) = ll(\lambda|s) = \log(c \lambda^s e^{-n\lambda}) = c + s \log \lambda - n\lambda, \quad (68)
\]
and this is maximized as usual (check that it's the max) by setting the derivative equal to 0 and solving:
\[
\frac{\partial}{\partial \lambda} ll(\lambda|s) = \frac{s}{\lambda} - n = 0 \quad \text{iff} \quad \lambda = \hat{\lambda}_{MLE} = \frac{s}{n} = \bar{y}. \quad (69)
\]