Frequentist Modeling (continued)

You would probably want the confidence interval (CI) to mean

\[P_F(0.142 \leq p \leq 0.218) = 0.95, \quad (6) \]

but it can't mean that in the frequentist approach to probability: in that approach \(p \) is treated as a fixed unknown constant, which either is or is not between 0.142 and 0.218.

So what does it mean?

This is a kind of calibration of the CI process: about 95% of the nominal 95% CIs would include the true value, if you were to generate a lot of them via independent IID samples from the population.
Frequentist Modeling (continued)

The diagram on page 6 takes up a lot of space; it would be nice to have a more succinct summary of it.

A random variable Y is said to follow the Bernoulli distribution with parameter $0 < p < 1$—this is summarized by saying $Y \sim B(p)$—if Y takes on only the values 1 and 0 and

$$P(Y = y) = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{if } y = 0 \end{cases} = p^y (1 - p)^{1-y}. \quad (7)$$

A parameter is just a fixed unknown constant.

Another popular name for the parameter p in this model is θ.

Evidently what the population and sample parts of the diagram on page 6 are trying to say, in this notation, is that (Y_1, \ldots, Y_n) are drawn in an IID fashion from the Bernoulli distribution with parameter θ.

In the usual shorthand, which I'll use from now on, this is expressed as

$$Y_i \overset{\text{IID}}{\sim} B(\theta), \quad i = 1, \ldots, n \quad \text{for some } 0 < \theta < 1. \quad (8)$$

This is the frequentist statistical model for the AMI mortality data, except that we have forgotten so far to specify an important ingredient: what is the population of patients whose mean (underlying death rate) is θ?

As a frequentist (recall page 5), to use probability to quantify your uncertainty about the 1s and 0s, you have to think of them as either literally a random sample or like a random sample from some population, either hypothetical or actual.
Frequentist Modeling (continued)

What are some possibilities for this population?

- All AMI patients who might have come to the DH in 2000–03 if the world had turned out differently; or

- Assuming sufficient time-homogeneity in all relevant factors, you could try to argue that the collection of all 400 AMI patients at the DH from 2000–03 is like a random sample of size 400 from the population of all AMI patients at the DH from (say) 1997–2006; or

- Cluster sampling is a way to choose, e.g., patients by taking a random sample of hospitals and then a random sample of patients nested within those hospitals. What we actually have here is a kind of cluster sample of all 400 AMI patients from the DH in 2000–2003. Cluster samples tend to be less informative than SRS samples of the same size because of (positive) intracluster correlation (patients in a given hospital tend to be more similar in their outcomes than would an SRS of the same size from the population of all the patients in all the hospitals). Assuming the DH to be representative of some broader collection of hospitals in California and (unwisely) ignoring intracluster correlation, you could try to argue that these 400 1s and 0s were like a simple random sample of 400 AMI patients from this larger collection of hospitals.

None of these options is entirely compelling.

If you’re willing to pretend the data are like a sample from some population, interest would then focus on inference about the parameter θ, the “underlying death rate” in this larger collection of patients to which you feel comfortable generalizing the 400 1s and 0s: if θ were unusually high, that would be prima facie evidence of a possible quality of care problem.
The Likelihood Function

Suppose (as above) that

\[Y_i \overset{\text{IID}}{\sim} B(\theta), \quad i = 1, \ldots, n \quad \text{for some } 0 < \theta < 1. \quad (9) \]

Since the \(Y_i \) are independent, the joint sampling distribution of all of them, \(P(Y_1 = y_1, \ldots, Y_n = y_n) \), is the product of the separate, or marginal, sampling distributions \(P(Y_1 = y_1), \ldots, P(Y_n = y_n) \):

\[
P(Y_1 = y_1, \ldots, Y_n = y_n) = P(Y_1 = y_1) \cdots P(Y_n = y_n)
= \prod_{i=1}^{n} P(Y_i = y_i).
\quad (10)
\]

But since the \(Y_i \) are also identically distributed, and each one is Bernoulli(\(\theta \)), i.e., \(P(Y_i = y_i) = \theta^{y_i} (1 - \theta)^{1-y_i} \), the joint sampling distribution can be written

\[
P(Y_1 = y_1, \ldots, Y_n = y_n) = \prod_{i=1}^{n} \theta^{y_i} (1 - \theta)^{1-y_i}.
\quad (11)
\]

Let’s use the symbol \(y \) to stand for the vector of observed data values \((y_1, \ldots, y_n) \).

Before any data have arrived, this joint sampling distribution is a function of \(y \) for fixed \(\theta \)—it tells you how the data would be likely to behave in the future if you were to take an IID sample from the Bernoulli(\(\theta \)) distribution.
The Likelihood Function (continued)

In 1921 Fisher had the following idea: after the data have arrived it makes more sense to interpret (11) as a function of \(\theta \) for fixed \(y \)—he called this the likelihood function for \(\theta \) in the Bernoulli(\(\theta \)) model:

\[
l(\theta | y) = l(\theta | y_1, \ldots, y_n) = \prod_{i=1}^{n} \theta^{y_i} (1 - \theta)^{1-y_i} \tag{12}
\]

\[
= P(Y_1 = y_1, \ldots, Y_n = y_n) \text{ but interpreted as a function of } \theta \text{ for fixed } y.
\]

Fisher tried to create a theory of inference about \(\theta \) based only on this function—we will see below that this is an important ingredient, but not the only important ingredient, in inference from the Bayesian viewpoint.

The Bernoulli(\(\theta \)) likelihood function can be simplified as follows:

\[
l(\theta | y) = \theta^s (1 - \theta)^{n-s}, \tag{13}
\]

where \(s = \sum_{i=1}^{n} y_i \) is the number of 1s in the sample and \((n - s) \) is the number of 0s.

What does this function look like?

With \(n = 400 \) and \(s = 72 \) it's easy to get Maple to plot it:

```maple
rosalind 329> maple

> l := (theta, s, n) -> theta^s * (1 - theta)^(n - s);

\[
l := (\theta, s, n) \rightarrow \theta^s (1 - \theta)^{(n - s)}
\]

> plotsetup( x11 );

> plot( l(theta, 72, 400), theta = 0 .. 1 );
```
The Likelihood Function (continued)

\begin{verbatim}
> plot(l(theta, 72, 400), theta = 0.12 .. 0.25);
\end{verbatim}

Does this function remind you of anything?
The Likelihood Function (continued)

It's often at least as useful to look at the logarithm of the likelihood function as the likelihood function itself:

\[
> \text{ll} := \text{log} (l(\theta, s, n));
\]

\[
> \text{plot} (\text{ll}(\theta, 72, 400), \theta = 0.12 .. 0.25);
\]

In this case, as is often true for large \(n \), the log likelihood function looks **locally quadratic around its maximum**.

Fisher had the further idea that the maximum of the likelihood function would be a good **estimate** of \(\theta \) (we'll look later at conditions under which this makes sense from the **Bayesian** viewpoint).
The Likelihood Function (continued)

Since the logarithm function is monotone increasing, it's equivalent in maximizing the likelihood to maximize the log likelihood, and for a function as well behaved as this you can do that by setting its first partial derivative with respect to \(\theta \) to 0 and solving:

\[
> \text{score} := \text{simplify} \left(\text{diff} \left(\text{ll} \left(\theta, s, n \right), \theta \right) \right); \\
> \text{score} := - \frac{s - n \theta}{\theta (-1 + \theta)} \\
> \text{solve} \left(\text{score} = 0, \theta \right); \\
> s/n
\]

> quit;

bytes used=2125632, alloc=1376004, time=0.51

rosalind 330>

The function of the data that maximizes the likelihood (or log likelihood) function is called the maximum likelihood estimate (MLE) \(\hat{\theta}_{\text{MLE}} \).

Thus in this case \(\hat{\theta}_{\text{MLE}} \) is just the sample mean \(\frac{s}{n} \), which we've previously seen is a sensible estimate of \(\theta \).
Calibrating the MLE

Maximum likelihood provides a basic principle for estimation of a (population) parameter θ from the frequentist/likelihood point of view, but how should the accuracy of $\hat{\theta}_{MLE}$ be assessed?

Evidently in the frequentist approach we want to compute the variance or standard error of $\hat{\theta}_{MLE}$ in repeated sampling, or estimated versions of these quantities—let's focus on the estimated variance $\hat{V}(\hat{\theta}_{MLE})$.

Fisher (1922) proposed an approximation to $\hat{V}(\hat{\theta}_{MLE})$ that works well for large n and makes good intuitive sense.

In the AMI mortality case study, where $\hat{\theta}_{MLE} = \bar{x} = \frac{s}{n}$ (the sample mean), we already know that

$$V(\hat{\theta}_{MLE}) = \frac{\theta (1 - \theta)}{n} \quad \text{and} \quad \hat{V}(\hat{\theta}_{MLE}) = \frac{\hat{\theta} (1 - \hat{\theta})}{n},$$

but Fisher wanted to derive results like this in a more basic and general way.
Calibrating the MLE (continued)

Imagine **quadrupling** the sample size in this case study from $n = 400$ to $n = 1600$ while keeping the observed death rate constant at 0.18—what would happen to the log likelihood function?

To answer this question, observe first that as far as maximizing the likelihood function is concerned it's equally good to work with any (positive) constant multiple of it, which is equivalent to saying that we can **add any constant** we want to the log likelihood function without harming anything.

In the Maple plot below I've added a different constant to each of the log likelihood functions with $(s,n) = (72,400)$ and $(288,1600)$ so that they both go through the point $(\hat{\theta}_{MLE},0)$:

```
> plot( { ll( theta, 72, 400 ) - evalf( ll( 72 / 400, 72, 400 ) ),
        ll( theta, 288, 1600 ) - evalf( ll( 288 / 1600, 288, 1600 ) ) },
        theta = 0.12 .. 0.25, color = black );
```
Calibrating the MLE (continued)

Notice that what's happened as \(n \) went from 400 to 1600 while holding the MLE constant at 18% mortality is that the second derivative of the log likelihood function at \(\hat{\theta}_{\text{MLE}} \) (a negative number) has increased in size.

This led Fisher to define a quantity he called the information in the sample about \(\theta \)—in his honor we now call it the (observed) Fisher information:

\[
\hat{I}(\hat{\theta}_{\text{MLE}}) = \left[-\frac{\partial^2}{\partial \theta^2} \log l(\theta|y) \right]_{\theta = \hat{\theta}_{\text{MLE}}}. \tag{15}
\]

This quantity increases as \(n \) goes up, whereas our uncertainty about \(\theta \) based on the sample, as measured by \(\hat{V}(\hat{\theta}_{\text{MLE}}) \), should go down with \(n \).

Fisher conjectured and proved that the information and the estimated variance of the MLE in repeated sampling have the following simple inverse relationship when \(n \) is large:

\[
\hat{V}(\hat{\theta}_{\text{MLE}}) \doteq \hat{I}^{-1}(\hat{\theta}_{\text{MLE}}). \tag{16}
\]

He further proved that for large \(n \) (a) the MLE is approximately unbiased, meaning that in repeated sampling

\[
E(\hat{\theta}_{\text{MLE}}) \doteq \theta, \tag{17}
\]

and (b) the sampling distribution of the MLE is approximately normal with mean \(\theta \) and estimated variance given by (16):

\[
\hat{\theta}_{\text{MLE}} \sim N[\theta, \hat{I}^{-1}(\hat{\theta}_{\text{MLE}})]. \tag{18}
\]

Thus for large \(n \) an approximate 95% confidence interval for \(\theta \) is given by \(\hat{\theta}_{\text{MLE}} \pm 1.96\sqrt{\hat{I}^{-1}(\hat{\theta}_{\text{MLE}})} \).
Calibrating the MLE (continued)

You can differentiate to compute the information yourself in the AMI mortality case study, or you can use Maple to do it for you:

\[\text{score} := (\theta, s, n) \rightarrow \text{simplify} \left(\text{diff} \left(\text{ll} \left(\theta, s, n \right), \theta \right) \right) ; \]

\[\text{score} := (\theta, s, n) \rightarrow \text{simplify} \left(\text{diff} \left(\text{ll} \left(\theta, s, n \right), \theta \right) \right) \]

\[\text{score} \left(\theta, s, n \right) ; \]

\[\frac{s - n \theta}{\theta \left(-1 + \theta \right)} \]

\[\text{diff2} := (\theta, s, n) \rightarrow \text{simplify} \left(\text{diff} \left(\text{score} \left(\theta, s, n \right), \theta \right) \right) ; \]

\[\text{diff2} := (\theta, s, n) \rightarrow \text{simplify} \left(\text{diff} \left(\text{score} \left(\theta, s, n \right), \theta \right) \right) \]

\[\text{diff2} \left(\theta, s, n \right) ; \]

\[\frac{2}{\theta \left(-1 + \theta \right)} \]

\[\frac{2 \left(-n \theta - s + 2 s \theta \right)}{\theta \left(-1 + \theta \right)} \]

\[\text{information} := (s, n) \rightarrow \text{simplify} \left(\text{eval} \left(- \text{diff2} \left(\theta, s, n \right), \theta = s / n \right) \right) ; \]

\[\text{information} \left(s, n \right) ; \]

\[\frac{3}{s \left(-n + s \right)} \]

\[\text{variance} := (s, n) \rightarrow 1 / \text{information} \left(s, n \right) ; \]

\[\text{variance} := (s, n) \rightarrow \frac{1}{\text{information} \left(s, n \right)} \]
Calibrating the MLE (continued)

\[\operatorname{variance}(s, n) = \frac{s(-n + s)}{-n} \]

\[\frac{3}{n} \]

This expression can be further simplified to yield

\[\hat{V}(\hat{\theta}_{\text{MLE}}) = \frac{s}{n} \left(1 - \frac{s}{n} \right) = \frac{\hat{\theta}(1 - \hat{\theta})}{n} \quad (19) \]

which coincides with (14).

From (19) another expression for the Fisher information in this problem is

\[\hat{I}(\hat{\theta}_{\text{MLE}}) = \frac{n}{\hat{\theta}(1 - \hat{\theta})} \quad (20) \]

As \(n \) increases, \(\hat{\theta}(1 - \hat{\theta}) \) will tend to the constant \(\theta(1 - \theta) \) (this is well-defined because we've assumed that \(0 < \theta < 1 \), because \(\theta = 0 \) and \(1 \) are probabilistically uninteresting), which means that information about \(\theta \) on the basis of \((y_1, \ldots, y_n) \) in the IID Bernoulli model increases at a rate proportional to \(n \) as the sample size grows.

This is generally true of the MLE:

\[\hat{I}(\hat{\theta}_{\text{MLE}}) = \mathcal{O}(n) \quad \text{and} \quad \hat{V}(\hat{\theta}_{\text{MLE}}) = \mathcal{O}(n^{-1}) \quad (21) \]

as \(n \to \infty \), where the notation \(a_n = \mathcal{O}(b_n) \) means that the ratio \(\left| \frac{a_n}{b_n} \right| \) is bounded as \(n \) grows.

Thus uncertainty about \(\theta \) on the basis of the MLE goes down like \(\frac{\theta_{\text{MLE}}}{\sqrt{n}} \) on the variance scale with more and more data (in fact Fisher showed that \(\theta_{\text{MLE}} \) achieves the lowest possible value: the MLE is efficient).
Bayesian Modeling

As a Bayesian in this situation, your job is to quantify your uncertainty about the 400 binary observables you'll get to see starting in 2000, i.e., your initial modeling task is predictive rather than inferential.

There is no samples-and-populations story in this approach, but probability and random variables arise in a different way: quantifying your uncertainty (for the purpose of betting with someone about some aspect of the 1s and 0s, say) requires eliciting from yourself a joint probability distribution that accurately captures your judgments about what you will see:

$$P_{B:y_{ou}}(Y_1 = y_1, \ldots, Y_n = y_n).$$

Notice that in the frequentist approach the random variables describe the process of observing a repeatable event (the "random sampling" appealed to here), whereas in the Bayesian approach you use random variables to quantify your uncertainty about observables you haven’t seen yet.

I'll argue later that the concept of probabilistic accuracy has two components: you want your uncertainty assessments to be both internally and externally consistent, which corresponds to the Bayesian and frequentist ideas of coherence and calibration, respectively.
Exchangeability

2.3 Exchangeability as a Bayesian concept parallel to frequentist independence

Eliciting a 400-dimensional distribution doesn't sound easy; major simplification is evidently needed.

In this case, and many others, this is provided by exchangeability considerations.

If (as in the frequentist approach) you have no relevant information that distinguishes one AMI patient from another, your uncertainty about the 400 1s and 0s is symmetric, in the sense that a random permutation of the order in which the 1s and 0s were labeled from 1 to 400 would leave your uncertainty about them unchanged. de Finetti (1930, 1964) called random variables with this property exchangeable:

\[
\{Y_i, i = 1, \ldots, n\} \text{ are exchangeable if the distributions of } (Y_1, \ldots, Y_n) \text{ and } (Y_{\pi(1)}, \ldots, Y_{\pi(n)}) \text{ are the same for all permutations } (\pi(1), \ldots, \pi(n)).
\]

NB Exchangeability and IID are not the same: IID implies exchangeability, and exchangeable \(Y_i\) do have identical marginal distributions, but they're not independent (if you were expecting a priori about 15% 1s, say (that's the 30-day death rate for AMI with average-quality care), the knowledge that in the first 50 outcomes at the DH 20 of them were deaths would certainly change your prediction of the 51st).

de Finetti also defined partial or conditional exchangeability (e.g., Draper et al., 1993): if, e.g., the gender \(X\) of the AMI patients were available, and if there were evidence from the medical literature that 1s tended to be noticeably more likely for men than women, then you would probably want to assume conditional exchangeability of the \(Y_i\) given \(X\) (meaning that the male and female 1s and 0s, viewed as separate collections of random variables, are each unconditionally exchangeable). This is related to Fisher's (1956) idea of recognizable subpopulations.