MVUE = Minimum variance unbiased estimators

Information in a sample with respect to \(\theta \)

\[
I(\theta) = -E \left[\frac{\partial^2 \ell}{\partial \theta^2} \right] = -E \left[\frac{\partial^2}{\partial \theta^2} \left(\ln L(x; \theta) \right) \right]
\]

Cramér-Rao lower bound

If \(\hat{\theta} = u(x_1, \ldots, x_n) \) is an estimator for \(\theta \) and \(E(\hat{\theta}) = \theta \) then

\[
\text{Var}(\hat{\theta}) \geq \frac{[K'(\theta)]^2}{I(\theta)}
\]

Under regularity conditions

\(\Rightarrow \) Suppose you have an unbiased estimator

\[
\text{Var}(\hat{\theta}) \geq \frac{1}{I(\theta)}
\]

Can we find estimators that reach this lower bound? \(\Rightarrow \) MVUE
Generally, that is a hard task. Typically, all you can do is verify that an estimator is the MVUE.

\[X_1, \ldots, X_n \sim \text{Exp}(\lambda), \quad E(X_i) = \lambda \]

NLE for \(\lambda \)?

\[\hat{\lambda} = \bar{X} \]

Is the NLE the MVUE?

1) Is it unbiased?

\[E(\hat{\lambda}) = E(\bar{X}) = E\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n} n \lambda = \lambda \]

2) \(\text{Var}(\hat{\lambda}) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) \]

\[= \frac{1}{n^2} n \lambda^2 = \frac{\lambda^2}{n} \]
\[L(\lambda) = \prod_{i=1}^{n} \frac{1}{x_i} \exp\left(-\frac{x_i}{\lambda}\right) \]

Let \(\lambda \) be the parameter.

\[l(\lambda) = -n \log \lambda - \frac{1}{\lambda} \sum x_i \]

\[\frac{\partial l}{\partial \lambda} = -\frac{n}{\lambda} + \frac{1}{\lambda^2} \sum x_i \]

\[\frac{\partial^2 l}{\partial \lambda^2} = \frac{n}{\lambda^2} - \frac{2}{\lambda^3} \sum x_i \]

\[-E \left[\frac{\partial^2 l}{\partial \lambda^2} \right] = -E \left[\frac{n}{\lambda^2} - \frac{2}{\lambda^3} \sum x_i \right] = -\frac{n}{\lambda^2} + \frac{2}{\lambda^3} n \lambda \]

Since \(\hat{\lambda} \) is unbiased and \(\text{Var} (\hat{\lambda}) = \frac{1}{\lambda^2} \) then it is the MVUE.
Efficient estimator: one that attains the Cramer-Rao lower bound.

The MVUE is the efficient unbiased estimator.

Assymptotically efficient estimator.

$\hat{\theta}$ is asymptotically efficient.

$$\lim_{n \to \infty} \frac{\text{Var}(\hat{\theta})}{[I(\theta)]^2} = 1$$

Under regularity conditions, the MLE is asymptotically efficient.

More generally, under regularity conditions

$\hat{\theta} - \theta \xrightarrow{D} N(0, I(\theta))$

CLT
\[\Rightarrow I(\theta) (\hat{\theta} - \theta) \rightarrow N(0,1) \]
\[I(\theta) (\hat{\theta} - \theta_0) \rightarrow N(0,1) \]

Examples

1) \(X_1, \ldots, X_n \sim \text{Uni}[0, \theta] \)

Is \(\hat{\theta} \) asymptotically normal in this case?

\[\Rightarrow \text{No, at least from the results that we have discussed because this likelihood does not satisfy regularity conditions.} \]

2) Let \(T_i \) be the lifetime of an electronic component and assume that \(T_i \sim \text{Exp}(\lambda) \) independently for each \(i \).
The data consists of arises from an experiment in which the components are observed for up to D hours. If the component fails, the lifetime is recorded, but if it lives more than D hours, only the maximum lifetime is recorded.

The observation available are

- \(T_1, \ldots, T_m \) = components that failed before D
- \(T_{m+1} \ldots T_n \) = components that did not fail during the study

Get the MLE for \(\lambda \).

\[
L(\lambda) = \prod_{i=1}^{m} \frac{1}{x} \exp(-\frac{1}{x} Ti) \times \prod_{j=m+1}^{n} \int_{0}^{\infty} \frac{1}{x} \exp(-\frac{1}{x} Ti) dTi
\]
\[
\int_0^\infty \frac{1}{x} \exp\left\{- \frac{1}{x} T_i \right\} dT_i = \left[-\exp\left\{- \frac{1}{x} T_i \right\} \right]_0^\infty = \exp\left\{- \frac{D}{x} \right\}
\]

\[
L(\lambda) = \left(\frac{1}{\lambda} \right)^m \exp\left\{- \frac{1}{\lambda} \sum_{i=1}^{n-m} T_i \right\} \cdot \left[\exp\left\{- \frac{D}{\lambda} \right\} \right] = (\lambda)^I
\]

\[
l(\lambda) = -m \log \lambda - \frac{1}{\lambda} \left[\sum_{i=1}^{n-m} T_i + D(n-m) \right]
\]

\[
\frac{d}{d\lambda} = -\frac{m}{\lambda} + \frac{1}{\lambda^2} \left[\sum_{i=1}^{n-m} T_i + (n-m)D \right] = 0
\]

\[
\lambda = \frac{\sum_{i=1}^{n-m} T_i + (n-m)D}{m}
\]
Can you argue that this MLE is consistent?

Yes, because the regularity conditions are satisfied.

It also satisfies the conditions for the existence of a CLT

\[I(\lambda) = \mathbb{E} \left(\frac{\partial^2 \ell}{\partial \lambda^2} \right) = \mathbb{E} \left[\frac{m}{\lambda^2} - \frac{2}{\lambda^3} \left\{ (n-m) \mathbb{D} + \frac{m}{\lambda} \sum_{i=1}^{m} T_i \right\} \right] = \mathbb{E} \left[\frac{m}{\lambda^2} - \frac{2}{\lambda^3} (n-m) \mathbb{D} + \frac{m}{\lambda} \sum_{i=1}^{m} T_i \right] \]

\((\hat{\lambda} - \lambda_0) \sim \mathcal{N}(0, \text{I}(\lambda)) \)
What would a 95% confidence interval for \(\lambda \) be?

\[
\frac{\hat{\lambda} - \lambda}{\sqrt{I(\hat{\lambda})}} \sim N(0,1)
\]

\(T = T(\theta) \)

\(t \geq T(\alpha) \)

(a, b) such that

\[\Pr(a < (\hat{\lambda} - \lambda)I(\hat{\lambda}) < b) = 0.95 \]

-1.96 \(\leq (\hat{\lambda} - \lambda)I(\hat{\lambda}) \leq 1.96 \)

\[\Rightarrow \lambda - \frac{1.96}{I(\hat{\lambda})} < \lambda < \hat{\lambda} + \frac{1.96}{I(\hat{\lambda})} \]

\[X \sim N(0,1) \]

\[X = -X \]

\[X \not= -X \]

\[X \sim N(0,1) \]
Likelihood ratio tests

$H_0: \theta = \theta_0 \quad \leftrightarrow \quad H_1: \theta \neq \theta_0$

\[T = \frac{L(\theta_0)}{L(\hat{\theta})} \quad T \leq 1 \text{ always} \]

T close to 1 favors the null hypothesis

T close to 0 favors the alternative hypothesis

Reject if $T < C$ (0 < C < 1)

where C is chosen to reflect the type I error you want for the test.
If \(c \) is small \(\Rightarrow \) You reject fewer times \(\Rightarrow \) \(c \) moves to the left (closer to zero)

If \(c \) is large \(\Rightarrow \) You don't care about rejecting the null \(\Rightarrow \) \(c \) moves to the right (closer to 1)
Example 6.3.1

H₀: λ = λ₀ \quad H₀: λ ≠ λ₀

X₁, ⋯, Xₙ \sim \text{Exp}(λ)

\[L(λ) = \left(\frac{1}{λ} \right)^n \exp \left\{ -\frac{1}{λ} \sum_{i=1}^{n} X_i \right\} \]

\[\hat{λ} = \frac{\bar{X}}{\bar{X}} \]

\[L(\hat{λ}) = \left(\frac{1}{\bar{X}} \right)^n \exp \left\{ -\frac{1}{\bar{X}} \sum_{i=1}^{n} X_i \right\} = \left(\frac{1}{\bar{X}} \right)^n \exp \left\{ -n \bar{X} \right\} \]

\[T = \frac{L(λ₀)}{L(\hat{λ})} = \frac{\left(\frac{1}{λ₀} \right)^n \exp \left\{ -\frac{n \bar{X}}{λ₀} \right\}}{\left(\frac{1}{\bar{X}} \right)^n \exp \left\{ -n \bar{X} \right\}} \]

= \left(\frac{\bar{X}}{λ₀} \right)^n \exp \left\{ -\frac{n \bar{X}}{λ₀} \right\} \exp \left\{ n \right\}

Reject \ H₀ \ if \ \ T < C \ where \ C \ is \ to \ be \ chosen.
Now we know that
\[\sum x_i \sim \text{Gamma}(n, \lambda) \]
\[\Rightarrow \frac{\sum x_i}{\lambda_0} \sim \text{Gamma}\left(\frac{n}{\lambda_0}, \lambda\right) \]
\[\Pr(\text{type 1 Error}) = \alpha \]
\[= \Pr(\text{Rejecting null} \mid \text{Null true}) \]
\[\lambda = \lambda_0 \]
\[\Rightarrow \text{If the null is true} \]
\[\frac{\sum x_i}{\lambda_0} \sim \text{Gamma}(n, 1) \]
\[2 \frac{\sum x_i}{\lambda_0} \sim \text{Gamma}(n, 2) = X_{2n}^2 \]
Formally, to get the LRT you need \(a \) and \(b \) to satisfy:

\[
\Pr(\chi^2_{2n} < a) + \Pr(\chi^2_{2n} > b) = \alpha
\]

and

\[
f(2an) = f(2bn)
\]

where

\[
f(t) = t^n \exp\{-nt\}
\]

Once you have \(a \) and \(b \) you have the rejection region.

In practice, the LRT is approximated by taking the probability in both tails to be the same.
The result is a bit more general.

$$T = -\ln \left(\frac{L(\theta_0)}{\max_{\theta \in \Theta^0} L(\theta)} \right)$$

For the likelihood ratio,

$$H_0: \theta \in \Theta_0 \quad vs \quad H_a: \theta \in \Theta^0.$$

Rejection region:

$A < C$ where C is obtained to match a certain fixed type I error.

What if $-A$ does not have any distribution that I recognize?

Wilk's theorem:

Under regularity conditions:

$$-2 \log A \sim \chi^2_p$$

"p is the difference in the number of tree parameters"
$X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ μ, σ^2 are unknown

$H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0$

Wald-type tests