§ 14.1

The differential

\[y = f(x) \]

Define

\[dy = f'(x) \Delta x \quad \text{< this is the differential} \]

And

\[f(x + \Delta x) = f(x) + dy \]

\[= f(x) + f'(x) \Delta x \]

\[\text{First order Taylor polynomial} \]

\[y = f(x) \]

\[1 \]

\[1 \]

\[\Delta x \]

\[x \]
Why is this helpful

\[
\max \ U(x,y) \\
given \ g(x,y) = I
\]

\[
\hat{U}(x,y,\lambda|I) = U(x,y) - \lambda \left[g(x,y) - I \right]
\]

follow the recipe

\[
\frac{\partial \hat{U}^*}{\partial I} = \lambda \quad \hat{U}^* = \hat{U}(x^*(I), y^*(I), \lambda^*(I)|I)
\]

The rate of change of the optimal value of utility given I

Economy gets better in —, and income goes from

\[I \to I + \Delta I \]
How much does the utility change?

1. We could solve the problem.

2. Use the differential

\[\Delta u = \frac{\Delta I}{\Delta I} = I^* \]

An approximation for how much the utility changes \(\Delta I \) for \(\Delta I \).

Another reason: \(\ln(1.05) = \ln(1 + .05) \)

Apply the differential

\[f(x) = \ln(x) \]

\[f'(x) = \frac{1}{x} \]

True value

\[\ln(1.05) \approx 0.04879 \]

\[x = 1 \quad \Delta x = .05 \]

The differential is \(f'(x) \Delta x = \frac{1}{1} \cdot .05 = .05 \)

\[f(x + \Delta x) = \ln(1.05) = f(x) + f'(x) \Delta x \]

\[= \ln(1) + .05 = .05 \]
It would be very cool if we could begin with a derivative, like
\[\frac{\Delta u^*}{\Delta t} \]
and end with the function \(u^*(t) \).

Section 14.2 Antiderivatives and The Indefinite Integral

If
\[F'(x) = f(x) \]
we say that \(F(x) \) is the antiderivative of \(f(x) \).

\[
\begin{array}{ccc}
\text{\(f(x) \)} & \text{\(F(x) \)} & \text{constant} \\
\hline
x & \frac{1}{2}x^2, \quad \frac{1}{2}x^2 + C & \\
x^3 & \frac{1}{4}x^4 + 16, \quad \frac{1}{4}x^4 + C & \\
x & \ln(x) + C & \\
\frac{1}{x} & -2x & \\
e^{-2x} & \frac{1}{2}e^{-2x} + C & -2x + C
\end{array}
\]
Some new symbology

\[\int f(x) \, dx \] means find the antiderivative of \(f(x) \)

\[\int \] integral sign

Integration is the process of finding the antiderivative

\[\int f(x) \, dx \] is called the indefinite integral

When you see \(\int 3z^2 \, dz \), you think "This asks us to find a function whose derivative is \(3z^2 \)"

\[z^3 + C \]
Some general properties of integrals

1. \(\int f(x) \, dx = F(x) + C \)

 if and only if \(\frac{d}{dx} F(x) = f(x) \)

2. \(\frac{d}{dx} \left[\int f(x) \, dx \right] = f(x) \)

 the derivative of the function whose derivative is \(f(x) \) is \(f(x) \)

3. \(\int \frac{d}{dx} [F(x)] \, dx = F(x) + C \)

find the function whose derivative is \(F(x) \) whose derivative will be \(\frac{d}{dx} F(x) \)

\[\frac{d}{dx} [F(x) + C] = \frac{d}{dx} F(x) + \frac{d}{dx} C = \frac{d}{dx} F(x) \]
\[\int k \, dx = kx + C \]

If \(a \neq -1 \),

\[\int x^a \, dx = \frac{x^{a+1}}{a+1} + C \]

\[\int \ln(x) \, dx = \ln(x) + C \]

\[\int e^{kx} \, dx = \frac{1}{k} e^{kx} + C \]

\[\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx + C \]
\[\int y(y+7) \, dy = \int [y^2 + 7y] \, dy \]

\[= \int y^2 \, dy + \int 7y \, dy \]

\[\int y(y+7) \, dy = \frac{1}{3} y^3 + \frac{7}{2} y^2 + C \]

Check: \(\frac{d}{dy} \left[\frac{1}{3} y^3 + \frac{7}{2} y^2 + C \right] \)

\[= y^2 + 7y + 0 = y(y+7) \checkmark \]

\[\int \frac{(x-1)(x+3)}{5} \, dx = \frac{1}{5} \int (x-1)(x+3) \, dx \]

\[= \frac{1}{5} \int \left[x^2 + 3x - x - 3 \right] \, dx \]

\[= \frac{1}{5} \int \left[x^2 + 2x - 3 \right] \, dx \]

\[= \frac{1}{5} \left[\frac{1}{3} x^3 + x^2 - 3x \right] + C \]
\[\int \frac{z^3 - 1}{z^2} \, dz = \int \left[\frac{z^3}{z^2} - \frac{1}{z^2} \right] \, dz \]

\[= \int \left[z - z^{-2} \right] \, dz \]

\[= \frac{1}{2} z^2 - (-z^{-1}) + C \]

\[= \frac{1}{2} z^2 + z^{-1} + C \quad \text{okay.} \]

What do we need to find the constant

Do we know there is even a non-zero constant in the antiderivative

We need a specific value of the antiderivative?
Example

Find \(\int x^3 \, dx \) knowing that \(F(2) = 7 \)

\[
F(x) = \frac{1}{4} x^4 + C
\]

Since \(F(2) = 7 \) \(\Rightarrow \frac{1}{4} (2)^4 + C = 7 \)

\(\Rightarrow 4 + C = 7 \)

\(C = 3 \)

So

\[
F(x) = \frac{1}{4} x^4 + 3 \quad \text{v} \quad \int x^3 \, dx \text{ with value } 7 \text{ when } x = 2
\]