Random Variable.
- assigns a number to each mutually exclusive event

Ex. Roll a die
RV is the result of the roll
\(X \in \{1, 2, 3, 4, 5, 6\} \)

Flip two coins
\(Y \) be # heads.
\(Y \in \{0, 1, 2\} \)

Probability Distribution.
gives the probability that
a RV takes each of the possible values.
For X:

<table>
<thead>
<tr>
<th>Roll</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>6</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>

$P(x) = \frac{1}{6}$

For Y:

<table>
<thead>
<tr>
<th># heads</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{4}$</td>
</tr>
</tbody>
</table>

Mutually exclusive events.

Probabilities sum to 1.

Probability distributions can be defined over

discrete or continuous random variables

- e.g. Binomial
- e.g. Normal
Binomial Distribution.

Bag contains one red ball
nine green balls

Make 5 draws with replacement

What is \(P(\text{exactly 2 reds in the 5 draws}) \)?

\[
\frac{1}{10} \times \frac{1}{10} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10} = \left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^3
\]

\(\rightarrow \)

\(\frac{1}{10} \times \frac{1}{10} \times \frac{9}{10} \times \frac{9}{10} \times \frac{9}{10} \)

\(\left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^3 \)

\(\left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^3 \)

These possibilities are mutually exclusive.

\(\rightarrow P(\text{one of the possibilities occurs}) \) is given

\(P(\text{exactly 2 reds in 5 draws}) \) by the addition rule

\[
= 10 \times \left(\frac{1}{10}\right)^2 \times \left(\frac{9}{10}\right)^3
\]

is there a formula that gives this number?
Binomial coefficient.

\[n - \text{trials.} \quad \binom{n}{k} = \frac{n!}{(n-k)! \cdot k!} \]

\[k - \text{successes.} \]

\[n! = n \text{ factorial} \]

\[4! = 4 \times 3 \times 2 \times 1 \]

\[\# \text{ways of arranging } n \text{ items.} \]

\[0! = 1 \]

\[n! = n \times (n-1) \times (n-2) \ldots \times 2 \times 1 \]

\[\binom{n}{k} = \# \text{ways to pick } k \text{ out of } n \text{ if order doesn't matter.} \]

\[p(k) = \frac{n!}{k! \cdot (n-k)!} \cdot p^k \cdot (1-p)^{n-k} \]

\[p - \text{probability of success on any trials.} \]
Example.

A family has 4 children.

What's the probability that they have more girls than boys?

\[P(3 \text{ out of } 4) + P(4 \text{ out of } 4) = \]

\[\frac{4!}{3!(4-3)!} \left(\frac{1}{2} \right)^3 \left(\frac{1}{2} \right)^1 + \frac{4!}{4!0!} \left(\frac{1}{2} \right)^4 \left(\frac{1}{2} \right)^0 \]

\[= \frac{24}{6 \times 1} \cdot \frac{1}{8} + \frac{24}{24} \cdot \frac{1}{16} \]

\[= \frac{1}{4} + \frac{1}{16} = \frac{5}{16} \approx 31\% . \]

In class 16 families with 4 children.

6 with more girls than boys.

\[\frac{6}{16} = 37.5\% . \]
Conditions for the Binomial Distribution to apply:

1. Fixed number of trials, n.
2. Trials are independent.
3. Each trial has only two possible outcomes. ("success" or "failure").
4. The probability of success, p, is the same for each trial

\[
\# \text{successes, } k \sim \text{Bin}(n, p).
\]

Ex.: Flip coin twice, count # heads.

correct guesses on multiple choice test.

Random sample of 100 students, count by gender.
Multiple choice test with 5 questions
Each with 5 options, one of which is correct.
You guess randomly.

Let \(z = \# \) guess correctly.

\[
p(z) = \frac{5!}{(5-z)!z!} \left(\frac{1}{5} \right)^z \left(\frac{4}{5} \right)^{5-z}
\]

\[
p(z=5) = \frac{5!}{0!5!} \left(\frac{1}{5} \right)^5 \left(\frac{4}{5} \right)^0 = 0.0003
\]

\[
p(z=3) = \frac{5!}{2!3!} \left(\frac{1}{5} \right)^3 \left(\frac{4}{5} \right)^2 = 0.0512
\]

<table>
<thead>
<tr>
<th>(z)</th>
<th>(p(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.328</td>
</tr>
<tr>
<td>1</td>
<td>0.410</td>
</tr>
<tr>
<td>2</td>
<td>0.205</td>
</tr>
<tr>
<td>3</td>
<td>0.051</td>
</tr>
<tr>
<td>4</td>
<td>0.006</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
p(\text{at least 2 right}) = 1 - p(0 \text{ right}) - p(1 \text{ right})
\]

\[
= 1 - 0.328 - 0.410
\]

\[
= 0.262.
\]
A probability distribution has a theoretical mean + standard deviation.

The mean of a probability distribution is called the expected value.

\[\mu = E[\omega] = \sum [\omega \cdot p(\omega)] \]

"the expectation of \(\omega \)"

\[E[3] = 0 \times 0.328 + 1 \times 0.410 + 2 \times 0.205 + 3 \times 0.051 + 4 \times 0.006 + 5 \times 0.0 = 1 \]
\[Y = \pm 1 \] are 2 coins.

\[E[Y] = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1 \]

\[X = \text{outcome of die roll} \]

\[E[X] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} \]

\[= 3 \frac{1}{2} \]

\[\sigma^2 = \text{Var}[X] = \sum [(x - \mu)^2 \cdot p(x)] = E[(x - \mu)^2] \]

\[\sigma = \sqrt{\sum [(x - \mu)^2 \cdot p(x)]} \]

\[\sigma^2 = E[x^2] - (E[x])^2. \quad \text{← sometimes easier to compute} \]

For a Binomial

\[\mu = np \]

\[\sigma = \sqrt{np(1-p)} \]

\[Y = \# H \text{ or } 2 \text{ coins} \]

\[\sigma_Y = \sqrt{2 \times \frac{1}{2} \times \frac{1}{2}} = \frac{1}{\sqrt{2}} \]

\[E - \# \text{ correct guesses} \]

\[\sigma_2 = \sqrt{5 \times \frac{1}{5} \times \frac{4}{5}} = \frac{2}{\sqrt{5}} = 0.89. \]
Recall: typically 95.0% of data lie in range \(\mu \pm 2\sigma \).

\[Z: \mu = 1 \quad \mu + 2\sigma = 2.79. \]
\[\sigma = 0.89 \]

If a student gets \(>3 \) correct, it starts to suggest that something other than guessing is going on.

Poisson Distribution.

When events occur randomly at a certain rate, the \# of events that occur in an interval of time (or space) has a Poisson distribution.
Examples.

injuries
typos in a paper.
earthquakes in a year.
chips in a cookie

\[p(x) = \frac{\mu^x e^{-\mu}}{x!} \]

\(\mu \) = 2.71828...

Mean: \(\mu \)
Variance: \(\mu \)
Std. dev: \(\sqrt{\mu} \)

Example: suppose you typically make 4 typos per page.
You type a 9-page paper.
Would it be unusual to make only 20 typos?

For 1 page, \(x \), \(\mu x = 4 \)
9. \(\mu y = 4 \times 9 = 36 \)
\(\sigma_y = \sqrt{36} = 6 \)
Empirical rule: consider $\mu - 2\sigma$.

$36 - 2 \times 6$

$24.$

$20 \leq 24$ so this would be considered unusual.
You arrive in one of the long intervals and chances are there is a clump after the interval (otherwise there would not have been a long interval for you to arrive in).