Correlation Regression

NO CLASS on Monday!
Hint: Problem #6 on HW (FPP Sec 9.4)

CS. #17: Correlation

\(Y \)	\(X \)
\(Y_1 \)	\(X_1 \)
\(Y_2 \)	\(X_2 \)
\(Y_3 \)	\(X_3 \)

\[X = \text{Ht. of father} \]
\[Y = \text{Ht. of son} \]

Outcome (Response) Variable (Dependent)

\[\bar{X} = 68 \text{ in.} \quad \bar{X}_x = 2.7 \text{ in} \quad n = 10 \]
\[\bar{Y} = 69 \text{ in.} \quad \bar{Y}_y = 2.7 \text{ in} \]

Mean SD \(\Delta y \approx \Delta x \)

\[\text{pt. of averages } (x, y) \]

Positive association

\[Y \sim (r < 0) \]

Negative association

\[Y \sim (r = 0) \]

No assoc.

\[r = \text{Strength of straight-line (linear) assoc. between } X \& Y \]

\[\sum \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2(n-1)} = r \]

Ave. of products of variables in standard units

\[\Delta x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]
\[\Delta y = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2} \]
2/6 AM 5 Friday

Basic Facts about r

1) r always comes out between -1 & $+1$

-1 - 0 - +1

Perfect * Perfect pos. r, linear assc,
reg. linear
nonlinear

Linear assc,

outlier

healthy, no assc.

2) r can be Footed by 2 things: non linearity & outliers

- outliner can confuse r, especially when n is small.

3) units of r? ex. $x = \text{income ($)}$, $Y = \text{ht (in.)}$
R is a pure # w/out units.

4) switching $x < Y$ leaves r unchanged

Y stays the same

5) adding a const. to x
also leaves r unchanged

6) multiplying x or Y by a pos. const.
seems to change r visually
but in fact this also leaves r unchanged.