This:

Correlation

Time:

Regression

Read: FDP Ch. 10, 11

Ass:

HWkS

Next:

No:

Wed:

Jun:

Due Wed 7 Jun;

Final Exam Review

Mon 12 Jun 4-6 PM Here media theater

HWk 6 Due Mon 12 Jun 4 PM at Final Exam Review

Office Hrs the 6 Jun Rescheduled

Note Change

CS 12:

Correlation (VIII A. p. 8)

\[y \]

\[x \]

\[X \]

\[Y \]

\[X_1 \]

\[Y_1 \]

\[X_2 \]

\[Y_2 \]

\[\vdots \]

\[X_n \]

\[Y_n \]

\[n \]

\[\bar{X} = 68 \, \text{IN} \]

\[S_x = 2.7 \, \text{IN} \]

\[n = 1078 \]

\[\bar{Y} = 69 \, \text{IN} \]

\[S_y = 2.7 \]

Here \(X \) = HT. of Father

Here \(Y \) = HT. of Son

Independent (Predictor) Variable

Outcome (Response) Variable

Dependent (Dependent) Variable
Positive association ($r > 0$)

Point of average (\bar{x}, \bar{y})

Pearson negative association

$r = \text{strength of straight-line association between } x \text{ and } y$

① ② r can be fooled by:
- **Nonlinearity**
- **Outliers**

$v = 0$
\[
\sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \cdot \left(\frac{y_i - \bar{y}}{s_y} \right) = \bar{r}
\]

(AVE OF PRODUCTS OF VARIABLES IN STANDARD UNITS)

\[s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}\]

\[s_y = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}\]

CORRELATION COEFFICIENT

Basic Facts

\[\bar{r}\] ALWAYS COMES OUT BETWEEN -1 AND +1

-1
0
+1

PERFECT NEGATIVE LINEAR ASSOCIATION

\[\text{NON-LINEAR}\]

PERFECT POSITIVE LINEAR ASSOCIATION

OUTLIER

HEALTHY, NO ASSOCIATION
Outlier (can confuse r, especially when n is small)

3. Units or r? (Ex. $x = \text{income (s)}$)

4. Switching x & y leaves unchanged

5. Adding a constant to x or y (Ex. $x \rightarrow x + 5$)

Also leaves r unchanged
1) Multiplying x or y by a positive constant seems to change \checkmark visually but in fact this also leaves \checkmark unchanged.

\[\frac{\text{mult} x}{y} \]

\[-5 \quad +5 \quad +10 \quad 15 \]