This time: probability models for sums
next time:

Due: Wed 3 May take home mid-term
handed out Wed 3 May, due Wed 10 May

CS 8 (roulette) \((1/38) \) pop. mean

\[
\bar{x} = \frac{-1 + (-1) + \ldots + (-1) + (+35)}{38} = \frac{-2}{38} = -0.0526
\]

\[\text{I expect to lose a nickel on average (} \mu \text{), give or take about } \pm 85.76 \]

\[\sigma = \sqrt{ \frac{(-1) - (-0.05))^2 + \ldots + ((-1) - (-0.05))^2 + \ldots + (+35) - (-0.05))^2}{38} = 85.76 \]
$S =$ my net gain after 1,000 spins

$P($ coming out ahead after 1,000 spins $) = P(S > 0)$

$P($ coming out ahead on any single play $) = \frac{1}{38}$
Expected value of $S' = E(V)$ of $S' = E(S')$

$= E_{	ext{IID}}(S') = \eta \mu = (\text{# draws})(\text{# mean})$

$= (1000)(-0.052) = -52$ so after 1000 spins I expect to be behind by about 52,

Standard Error of $S' = SE(S')$

$SE_{\text{IID}}(S') = \frac{\sigma \sqrt{n}}{\sqrt{1}} = \sigma \sqrt{n}$

$= (\text{# SD}) \sqrt{\text{# draws}}$

<table>
<thead>
<tr>
<th>N</th>
<th>X</th>
<th>σ</th>
<th>$\sigma \sqrt{SE(S')}$</th>
<th># draws</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>X</td>
<td>σ</td>
<td>$\sigma \sqrt{SE(S')}$</td>
<td># draws</td>
</tr>
<tr>
<td>θ</td>
<td>σ</td>
<td>$\sigma \sqrt{SE(S')}$</td>
<td># draws</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>σ</td>
<td>$\sigma \sqrt{SE(S')}$</td>
<td># draws</td>
<td></td>
</tr>
</tbody>
</table>