THIS STATISTICAL MODELS FOR MEAN

READ: FPP CH. 20, 21

MEASUREMENT ERROR, REVISITED: WHY DOES IT HELP TO TAKE AN AVERAGE?

IF NO BIAS

\[(y_1)^{obs.1} = \text{TRUTH} + \text{ERROR}_1 \]
\[(y_2)^{obs.2} = \text{TRUTH} + \text{ERROR}_2 \]
\[\vdots \]
\[(y_n)^{obs.n} = \text{TRUTH} + \text{ERROR}_n \]

MEAN
\[\bar{y} = \text{TRUTH} + \text{AVERAGE OF RANDOM ERRORS} \]

AVERAGE OF N OBS

CANCELLATION OF +4 - TERMS

TYPICAL ERROR IN ANY SINGLE OBSERVATION IS ABOUT 0 IN SIZE, BUT TYPICAL SIZE OF AVERAGE
Of a random error will not be 0 but \(\text{SE}(\bar{y}) = \frac{\sigma}{\sqrt{n}} \) (a lot smaller than \(\sigma \) if \(n \) is large).

If bias

\[
\text{Obs}_1 = \text{Truth} + \text{Bias} + \text{Error}_1
\]

\[
\vdots
\]

\[
\text{Obs}_n = \text{Truth} + \text{Bias} + \text{Error}_n
\]

\[
\bar{y} = \text{Truth} + \text{Bias} + \text{Ave. of n random error}
\]

If bias, as \(n \) ↑ \(\bar{y} \) gets closer not to truth but to \(\text{Truth + Bias} \) & we can't make bias go away just by getting more data (this explains literary digest poll).
Quantitative Summary

Quantity of Interest
- Mean Amount of Money Owed on Pop. Waybills

Estimate
- \(ar{y} = 28.09\)

Give or Take
- \(SE(\bar{y}) = \frac{s}{\sqrt{n}} = 0.69\)
NORMAL CURVE: IMPOSSIBLE HERE BECAUSE IT PREDICTS A LOT OF VARIABLES WITH NEGATIVE μ; LONG TAIL EVEN WORSE; SO HIST. HAS TO HAVE LONG RIGHT HAND TAIL.
\[E_{\text{IID}}(\bar{x}) = \mu \] (Formula Sheet)

\[\text{Estimate:} \]
\[\text{SE}_{\text{IID}}(\bar{x}) = \frac{\sigma}{\sqrt{n}} \]

\[\text{Nice but unusable (\sigma not known)} \]
\[\text{SE}_{\text{IID}}(\bar{x}) = \frac{5}{\sqrt{10}} = 0.69 \]

\[\text{SE \& 0.69} \]

\[\text{LONG RUN histograms of } \bar{x} \]

\[\text{(CLT)} \]

\[\mu \]

\[\text{EV} \]

Interpretation: I think \(\mu \) is around \(\$28.09 \) \(\bar{x} \), give or take about \(\$0.69 \) (SE of \(\bar{x} \)).