Class Notes

this time: Comparing 2 samples
next time: no class Mon, but on Wed: 2 samples, correlation
-reading: EPP ch 9, 9 (7)
-if your regular discussion section is on a Monday, you need
to go to another section this week
-new due date for homework 5: Wed, June 7
- Final exam review session: (looking for more now) probably
Monday evening, June 12

[Case study 14]

\[\text{Pop} \]
\begin{align*}
\text{all possible} & \quad \text{Sample} & \quad \text{IDS} \\
\text{diff \& ratio} & \quad \text{diff \& ratio} & \quad \text{diff \& ratio}
\end{align*}

\[N = \log \] \quad \text{like SRS} \quad \text{n=66} \quad \text{n=66} \quad \text{n=66}

\[\text{mean (M)} \] \quad \text{mean (F)} \quad \text{mean (F)}

\[\text{SD (S)} \] \quad \text{SD (S)} \quad \text{SD (S)}

\[\text{L-R Mean} = E_{110} (\hat{b}) = 9.10 \quad \text{SE} \]

\[\text{Est L-R SD} = \frac{E_{110} (\hat{b})}{n^{1/2}} = \frac{9.10}{\sqrt{66}} = 1.52 = 19.4 \]

\[\text{CLT} \]

\[\hat{b} = 19 \text{ cases} \]

Inferential Summary

quantity of interest: \(\Delta = \text{mean difference (diff - std)} \) in pop
estimate: \(\Delta = 69 \) cases
give or take: \(\text{SE}_{10} (\hat{b}) = \frac{\text{SE}}{\sqrt{n}} \) = 19 cases
95% CI for \(\Delta = \) \(\hat{b} \pm \text{SE} (\hat{b}) = -69 \pm 39 \) cases

Q: Is this difference large in practical terms?
A: \(\frac{\Delta - \hat{b}}{\text{SE} (\hat{b})} = \frac{-69 + 19}{9.4} = -7.5 \text{ (This IS LARGE)} \)
Q: Stat Sig?
A: Yes because 0 is not in the 95% CI.

There are two ways to get "matched pairs"
(1) - like CS14
(2) - person, before and after

Cae study 15]
raw data

<table>
<thead>
<tr>
<th>tribe 1</th>
<th>tribe 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_1 = 25)</td>
<td>(n_2 = 27)</td>
</tr>
<tr>
<td>mean ((\bar{x}_1) = 59.4 \text{ in})</td>
<td>mean ((\bar{x}_2) = 61.3 \text{ in})</td>
</tr>
<tr>
<td>SD ((s_1) = 1.8 \text{ in})</td>
<td>SD ((s_2) = 2.4 \text{ in})</td>
</tr>
</tbody>
</table>

2 independent samples - no linkage between them

Q: Is the difference (59.4 in vs. 61.3 in.) stat sig?
A: yes, 1.9 is a whole SD.

Q: Is it stat sig?
A: ...

(61.3 - 59.4 = 1.9 in. of 69.4)
Inferential Summary

Quant. of Interest: \(\mu_2 - \mu_1 \)

Estimate: \(\bar{x}_2 - \bar{x}_1 = 1.9 \text{ in} \)

Give or Take: \(s_e(\bar{x}_2 - \bar{x}_1) = 0.6 \text{ in} \)
\[SE_{\text{indep independent}}(\bar{y}_2 - \bar{y}_1) = ? \]
\[SE(\bar{y}_2) = 0.46 \text{ m} \]
\[SE(\bar{y}_1) = 0.36 \text{ m} \]

\[SE(\bar{y}_2 - \bar{y}_1) = SE(\bar{y}_2) + SE(\bar{y}_1) = \sqrt{(0.36)^2 + (0.46)^2} = 0.58 \]

\[SE(\bar{y}_2 - \bar{y}_1) = SE(\bar{y}_2 - \bar{y}_1) - \sqrt{SE(\bar{y}_2)^2 + SE(\bar{y}_1)^2} \]
\[= \sqrt{\left(\frac{s_1}{\sqrt{n_1}} \right)^2 + \left(\frac{s_2}{\sqrt{n_2}} \right)^2} \]

\[SE_{\text{indep independent}}(\bar{y}_2 - \bar{y}_1) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \]