Class Notes

this time: Statistical Models for Means & Percentages, Inference
next time: Significance Testing
- reading: FPP ch. 26

[CS 10 continued]

Inferential Summary

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>(\bar{x}) = mean of money owed on all avg bills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>(\bar{x} = $28.09)</td>
</tr>
<tr>
<td>Give or Take</td>
<td>(\hat{SE}(\bar{x}) = \frac{\hat{r}}{n}) (or (\hat{SE}(\bar{x}) = \frac{\sigma}{\sqrt{n}}))</td>
</tr>
<tr>
<td>95% Confidence Interval</td>
<td>(\bar{x} \pm 2\hat{SE}(\bar{x})) = ($26.71, $29.47)</td>
</tr>
</tbody>
</table>

Long Run Histogram of \(\bar{x} \):

95% chance that \(\mu \) & \(\bar{x} \) will differ by no more than \(2\hat{SE} = \$1.38 \). This suggest the interval (\$26.71, \$29.47). Neyman (1930) called this the 95% "confidence interval" (CI) for \(\mu \).

It is a good bet that \(\bar{x} \) is between this interval.

Q: Does this mean that \(P(26.71 \leq \mu \leq 29.47) = 95\% \) in relative frequency approach to a problem?

A: No, unfortunately \(\mu \) is a fixed unknown constant (parameter) which either is or is not in (\$26.71, \$29.47). If \(\mu \) is in range, \(P_c = 100\% \). If not, \(P_c = 0\% \).

[Diagram showing a normal distribution with 95% confidence interval]
For F: ① About 68% of the raw bills in the sample are in the range $28.09 \pm $0.69.
 A: False, correct SD would be about $31.40.
② About 68% of the raw bills in the population are in the range $28.09 \pm $0.69.
 A: False, truth is 28.09 ± 31.40. 0.69 is how far you can expect x to differ from μ.