Case Study 15:

tribe 1

tribe 2

\[
\begin{align*}
&\text{height} \quad \text{linked?} \\
&n_1 = 25 \\
&n_2 = 27 \\
&\text{mean } \bar{y}_1 = 59.4 \text{ in} \\
&\text{SD } s_1 = 1.8 \text{ in} \\
&\text{mean } \bar{y}_2 = 61.3 \text{ in} \\
&\text{SD } s_2 = 2.4 \text{ in}
\end{align*}
\]

2 independent samples - no connection between the two

Tribes:

population

all tribe 1 adult females at relevant time

sample

observed skeletons

1. O.S.

\[\text{possible } \bar{y}_i \text{'s} \]

\[
\begin{align*}
&\text{height} \quad \text{like SRS} \quad \text{like IID} \\
&n_1 = 25 \\
&\text{mean } \mu_i = ? \\
&\text{SD } \sigma_i = ? \\
&\text{pop. hist.} \\
&\text{hypothetical mean } \bar{y}_i = 59.4 \text{ in} \\
&\text{SD } s_i = 1.8 \text{ in} \\
&\text{long run mean?} \\
&\text{long run SD?} \\
&\text{long run histogram?}
\end{align*}
\]

\[
\begin{align*}
&\text{mean } \bar{y}_i = ? \text{(ex: 59.9 in)} \\
&\text{SE}_{\bar{y}_i} = \frac{\sigma_i}{\sqrt{n_i}} = \frac{1.8}{\sqrt{25}} = 0.36 \text{ in} \\
&\text{SE} = 0.36 \\
&\text{normal curve (CLT)}
\end{align*}
\]
Inferential Summary for Tribe 1

unknown quantity of interest
\[\mu_1 = \text{mean height of all adult females in tribe 1} \]

estimate
\[\bar{y}_1 = 59.4 \text{ in} \]

give or take
\[\hat{SE}_{11D}(\bar{y}_1) = 0.36 \text{ in} \]

Tribe 2

population
all tribe 2 adult females at relative time

sample
observed skeletons

possible \(y_2 \)'s

Inferential Summary for Tribe 2

unknown quantity of interest
\[\mu_2 = \text{(same as tribe 1)} \]

estimate
\[\bar{y}_2 = 61.3 \text{ in} \]

give or take
\[\hat{SE}_{11D}(\bar{y}_2) = \frac{\sigma_2}{\sqrt{n_2}} = \frac{5}{\sqrt{27}} = 2.4 \text{ in} = 0.46 \text{ in} \]
Real Inferential Summary

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_2 - \mu_1)</td>
<td>(\bar{y}_2 - \bar{y}_1) = (61.3 in - 59.4 in) = 1.9 in</td>
</tr>
</tbody>
</table>

Is this difference pract. sig?

- Yes
- Most Tribe 2 women would be taller than most Tribe 1 women

Give or take for estimate

SE (\(\bar{y}_2 - \bar{y}_1 \)) = 0.6 in

95% CL for \((\mu_2 - \mu_1) \)

\((\bar{y}_2 - \bar{y}_1) \pm 2SE(\bar{y}_2 - \bar{y}_1) = 1.9 \pm 2(0.6) = 1.9 \pm 1.2 = (0.7, 3.1) \)

Math fact: Uncertainty combines w/ 2 independent samples like the legs of a right triangle

\[
\text{SE}(\bar{y}_2 - \bar{y}_1) = \sqrt{(\text{SE}(\bar{y}_1))^2 + (\text{SE}(\bar{y}_2))^2}
\]

\[
(\text{SE}(\bar{y}_1))^2 = \frac{S_1^2}{n_1}, \quad (\text{SE}(\bar{y}_2))^2 = \frac{S_2^2}{n_2}
\]

Long run hist of (\(\bar{y}_2 - \bar{y}_1 \))

null: no real difference = \((\mu_2 - \mu_1) = 0 \)

\(\text{SE} = 0.6 \)

95% CI for \((\mu_2 - \mu_1) \)

- Bottom: 0.7 in
- Top: 3.1 in

\((\bar{y}_2 - \bar{y}_1) - 2\text{SE} \)

\((\mu_2 - \mu_1) + 2\text{SE} \)

0 is not in 95% CI, so null looks wrong \(\rightarrow \) stat sig
Is this data gathering method like SRS or might it instead be biased?

- **Size-bias/length-bias sampling**: big things are easier to find than small things.
- Her estimate of \bar{y}_1, of μ_1, is likely to have been biased on high side, and ditto for \bar{y}_2 as estimate of μ_2.
- But this bias should largely cancel in looking at the difference ($\bar{y}_2 - \bar{y}_1$) as an estimate of $(\mu_2 - \mu_1)$.
- So this is okay.

(Bad measurements methods are bad for one sample at a time, but are okay for comparing 2 samples)

(End of case study 15)

Case Study 16 p. 102

<table>
<thead>
<tr>
<th>"black"</th>
<th>"White"</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1's+]</td>
<td>[1's+]</td>
</tr>
<tr>
<td>[0's]</td>
<td>[0's]</td>
</tr>
<tr>
<td>$n_1 = 100$</td>
<td>$n_2 = 900$</td>
</tr>
</tbody>
</table>

2 independent samples w/ 1's + 0's

Black population

- All black people in US in 1977
- 1=yes, 0=no

Sample

- Observed black people
- Favor?

IDS possible \hat{p}'s

Pop Hist

- N: big
- Mean $\hat{p}_1 = ?$

Long run mean:

- $E_{1,n_1}(\hat{p}) = \hat{p}_1$
- Long run SD:

$$s_{\hat{p}_1} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}$$

- Estimated SD:

$$s_{\hat{p}_1} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1}}$$

- $s_{\hat{p}_1}(\hat{p}_1) = \hat{p}_1(1-\hat{p}_1)$
- $\sqrt{(0.27)(0.73)} = 4.4^{\%}$
long run histogram:

\[\hat{SE} = 4.4\% \]

normal curve (CLT)

White population

all whites in 1977

favor?

1 ± 5

N_2 = [1's + 0's]

like SRS

N_2 = 900

mean \(\hat{p}_2 = ? \)

hypothesized

\[\frac{15^*}{0's} \]

mean \(\hat{p}_2 = 8\% \)

IDS possible \(\hat{p}_2 \) 's

sample

observed white people

favor?

1 ± 5

n_2 = 900

[8\%]

[7\%]

long run mean:

\[E_{100} (\hat{p}_2) = \mu_2 \]

mean \(\hat{p}_2 = ? \) (ex: 7\%)

long run SD:

\[SE_{100} (\hat{p}_2) = \sqrt{\hat{p}_2 (1-\hat{p}_2) / n_2} \]

\[\sqrt{(0.05)(0.95)} = 0.9\% \]

\[\sqrt{900} \]

long run histogram:

\[\hat{SE} = 0.9\% \]

normal curve (CLT)

Real Inferential Summary

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
<th>((p_1 - p_2)) = difference in proportions between blacks + whites on preferential treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>(\hat{p}_1 - \hat{p}_2) = 27% - 8% = 19%</td>
</tr>
<tr>
<td>Pract Sig?</td>
<td>yes: (\frac{27}{5} = 3.4) times greater % for blacks than whites</td>
</tr>
<tr>
<td>Give or Take</td>
<td>(SE(\hat{p}_1 - \hat{p}_2) = 4.5%)</td>
</tr>
<tr>
<td>95% CI for</td>
<td>((\hat{p}_1 - \hat{p}_2) \approx 2SE(\hat{p}_1 - \hat{p}_2) = 19% \pm 2(4.5%) = 19% \pm 9% = (10%, 28%))</td>
</tr>
</tbody>
</table>
\[
\text{SE}_{1, P} (\hat{p}_1 - \hat{p}_2) = \sqrt{\left(\frac{\text{SE}(\hat{p}_1)}{n_1}\right)^2 + \left(\frac{\text{SE}(\hat{p}_2)}{n_2}\right)^2} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \approx 4.5\% \\
\frac{0.9\%}{\text{Estimated}} \quad \frac{4.1\%}{\text{Actual}}
\]