May 12, 2005 Lecture Notes

Significance testing

Case Study 12 continued:

estimated long run SD: \(\hat{SE}_{\bar{y}} = \frac{s}{\sqrt{n}} = \frac{5}{\sqrt{100}} = \frac{3 \text{ days}}{10} = 0.3 \text{ days} \)

long run histogram of \(\bar{y} \) if null is true:

\[\frac{5.4 - 6.3}{0.3} = -3 = \text{z} \]

Even more extreme than -3 standard units

\[5.4 \]

\(z \)-test = -3 = \text{ z ; how unusual is this? } \)

\(P \text{ value} = P(\text{chance, if null is true, of getting data as extreme as or more extreme than what we got}) \)

go back to the alternative

where is more extreme than what we got?

if you look at the alternative, \(\mu < 6.3 \), so we look at \(\bar{y} < 5.4 \)

because that is the most extreme

(here we are only looking at one tail to get the \(P \)-value: one tail test)

\(P = 0.15\% \)

final step: if \(P \) is small, favor the alternative

if \(P \) is large, favor the null

How small is small enough? No general answer—depends on the real world consequences of choosing the wrong hypothesis

Conventional Answers:

\(P \leq 5\% \) \(\Rightarrow \) "statistically significant" (stat.slg)

\(P \leq 1\% \) \(\Rightarrow \) "highly stat. sig."

Here, the result is "highly statsig" (\(P = 0.15\% \)) \(\Rightarrow \) favor the alternative (the mean really has gone down)
However, you can’t tell if flextime caused this decline, might have been some other change over time

better design:

(Treatment) Compare 2 groups at the same time - one on flextime and the other not on flextime (control)

(End of Case Study 12)

Case Study 13: 1 = Female, 0 = Male

population

all students at UCB in 1977

sample

observed students

imaginary data set

[possible \hat{p}'s]

$\begin{align*}
N &= \text{big} \left[\begin{array}{c} 15+ \\text{like SRS} \\ 0\text{'s} \end{array} \right] \\
\text{like IID} \\
\text{mean } p &= 33\% \\
\text{SD } \sigma &= \sqrt{\frac{p(1-p)}{n}} \\
\end{align*}$

population

histogram:

$\begin{array}{c}
67\% \\
33\% \\
\end{array}$

$\begin{align*}
\text{gender} &\xrightarrow{\text{like SRS}} \text{gender} \\
\left[\begin{array}{c} 15+ \\
0\text{'s} \end{array} \right] &\xrightarrow{\text{n=100}} \text{mean } \hat{p} = 46\% \\
\left[\begin{array}{c} 15+ \\
0\text{'s} \end{array} \right] &\xrightarrow{\text{n=100}} \text{mean } \hat{p} = ? (\text{ex: } 32\%) \\
\end{align*}$

null hypothesis: his method is like SRS

\hat{p} should be expected to be about 33%

(we have to be able to try null on for size)

alternative hypothesis: his method is not like SRS

\hat{p} might be < 33% or > 33% (2 sided alternative)
Long Run mean: $\hat{p}_{100} = p = 33\%$

Long Run SD:
\[SE_{100}(p) = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{p(1-p)}}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{(0.33)(0.67)}{100}} = 0.047 = 4.7\% \]

Long Run histogram of p if null is true:
- $SE = 4.7\%$
- Follows normal curve because of CLT
- Would be equally surprising as getting 40%
- Because $Z = 2.75$, inside 97.4%. $100\% - 97.4\% = 2.6\% = P$

2-sided p-test (because of the 2-sided alternative)
- $P < 0.6\%$: highly statistically significant because $p < 1\%$
- Is also practically significant because 40% is quite different from 33% as far as gender is concerned.
- If it was a one-tailed p-test, we would have gotten 0.3% and we would have arrived at the same conclusion.

Thus, this is not an SRS - he probably likes talking to women.

(End of Case Study 13)

Pitfalls of significance testing:
- Statsig is not at all the same as practically sig
 - Example: new drug to lower systolic blood pressure
 - Null: (drug does not work) $\mu = 0$
 - Alt: (drug does make a change) $\mu = 0$
difference
(A - B)

\[
\begin{bmatrix}
-33 \text{ mm Hg} \\
+1 \text{ mm Hg}
\end{bmatrix}
\] \[n = 8000\]
pop. mean difference (A - B) = \(\mu\)

mean \(\bar{y} = -1\) mm Hg

(190 to 189 - not big enough of a difference in practical terms)

SD \(s = 20\) mm Hg

\[
\frac{s}{\sqrt{n}} = \frac{20 \text{ mm Hg}}{\sqrt{8000}} = 0.22 \text{ mm Hg}
\]

SE of difference: \(\hat{SE}(\bar{y}) = \frac{s}{\sqrt{n}} = \frac{20 \text{ mm Hg}}{\sqrt{8000}} = 0.22 \text{ mm Hg} = 22\%\)

Long Run histogram of \(\bar{y}\) if null true:

\(\hat{SE} = 0.22\)

[Diagram of normal curve b/c CLT]

\(-1\) \(0\) \(1\)

\(-1.5\) \(0\) \(1.5\)

\(P = 0\%\) so way stat sig but not practically sig because too much data

ex: same situation but pilot study (much less people)

(A - B)

\[
\begin{bmatrix}
\cdot \\
\cdot \\
\cdot
\end{bmatrix}
\] \[n = 8\]

mean \(\bar{y} = -10\) mm Hg

SD = 20 mm Hg

\[
\frac{s}{\sqrt{n}} = \frac{7 \text{ mm Hg}}{\sqrt{8}} = 7 \text{ mm Hg}
\]

\[
\hat{SE}(\bar{y}) = \frac{s}{\sqrt{n}} = \frac{20 \text{ mm Hg}}{\sqrt{8}} = 7 \text{ mm Hg}
\]

this difference is large in clinical terms, so is practically sig, but is it stat sig?
P = 16% "not stat sig" : insufficient evidence to reject null hyp.
- this happened because we had too little data.

Thus, choose n so that stat sig = prac. sig.