read FPP ch. 27
Significance testing

Case Study 12 continued
* put long run SD in model from May 10th
 estimated SD = \(\hat{\sigma}_{\text{long}}(\bar{Y}) = \frac{3.9}{\sqrt{100}} = 0.3 \) days

* long run histogram of \(\bar{Y} \) if null is true:

\[\begin{align*}
\hat{\sigma} &= \frac{3.9}{\sqrt{100}} \\
&= 0.3 \\
&= (CT) \\
&= \text{raw units} \\
&= \text{standard units (z)} \\
&= \frac{5.4 - 0.3}{0.3} \\
&= 17 \\
&= \text{z score}
\end{align*} \]

\(z = -3 \), so what?
\(\rightarrow \) how unusual is \(z = -3 \)?

Answer:

\(p\text{-value} = P = \text{chance, if } H_0 \text{ is true, of getting data as extreme as, or more extreme than, what we got (find by calculating area to the left of 5.4 days under the curve because this is more extreme).} \)

\(\rightarrow \) how do you know where "more extreme" is?

Answer:

Look at the form of the alternative hypothesis; here alt. is \(\mu < 0.3 \) so we look only at \(\bar{Y} < 5.4 \)

here we look only at one tail (left) of the normal curve to get \(P \): one-tailed test; here \(P = 0.15\% \)

Final Step:
if \(P \) is small \(\rightarrow \) favor alt. hypothesis
if \(P \) is large \(\rightarrow \) favor null hypothesis
→ How small is small enough for \(P \)?

No general answer (depends on real world consequences of choosing wrong hypothesis)

Conventional answer: (stat. sig. = statistically significant)

\[
P \leq 5\% \iff \text{"stat. sig."} \\
P \leq 1\% \iff \text{"highly stat. sig."}
\]

So here, result is highly stat. sig. \((P = 0.15\%\) \(\rightarrow \)

favor alt. hypothesis (the mean really has gone down).

But

you can't tell if flex time caused this decline (might have been due to some other change over time).

Better design:

Compare 2 groups at the same time, one on flex time (treatment), the other not (control).

Case Study B

*Under null model \(H_0 : \theta = M \)

\[
\begin{align*}
\text{Pop:} & \quad \text{all students at VCB in 1977} \\
\text{Sample:} & \quad \text{the observed students} \\
\text{Imaginary data set:} & \quad \text{possible } \hat{\theta} \text{'s}
\end{align*}
\]

\[
\begin{align*}
N = 2 \\
\text{Gender:} & \quad \left[\begin{array}{c} 1's \\ 3's \\ \emptyset \end{array} \right] \\
\text{Mean } \hat{p} = 46\% \\
\text{SD } \sigma = \sqrt{\frac{p(1-p)}{n}} \\
\text{Hypothetical } \hat{p} = \frac{1}{3} (\text{ex. 32%}) \\
\text{Pop. histogram:} & \quad \left[\begin{array}{c} 1's \\ 3's \\ \emptyset \end{array} \right]
\end{align*}
\]

\[
\begin{align*}
\text{Long run mean } E_{\text{IID}}(\hat{p}) = p = 33\% \\
\text{Long run SD } SE(\hat{p}) = \sqrt{\frac{p(1-p)}{n}} \\
& = 4.7\% \\
\end{align*}
\]

\[
\begin{align*}
\text{Long run histogram of } \hat{p} \text{ if } H_0 \text{ true}
\end{align*}
\]

12 May 2005
H₀ (null hypothesis) (method of gathering) (data is like SRS) (expected to be = 33%)
Hₐ (alt. hypothesis) (not SRS) (p might be either above or below 33%)
= 2 sided alternative

we say H₀ is method like SRS because we have to be able to try out null.

\[Z = \frac{(\text{obs. p}) - (\text{expected p if H₀ true})}{(\text{SE of p if H₀ true})} = \frac{\text{signal}}{\text{noise}} = \frac{46\% - 33\%}{4.7\%} = 2.75 \]

2-tailed p-value (for a 2-sided alternative) = 0.04% (using z table)
if 1-tailed p = 0.3% so arrive at same conclusion

Stat. Sig.? → Yes, (p ≤ 1%)
Pract. Sig.? → Yes, 46% is quite different in a real-world sense from 33% in terms of gender

Pitfalls of Sig. testing

 (pract. sig. = practical significance)

ex. new drug is given to lower blood pressure
H₀ : (drug doesn't work) (μ = 0)
Hₐ : (drug makes a change) (μ ≠ 0)

Blood Pressure (systolic)

<table>
<thead>
<tr>
<th>after (a)</th>
<th>before (b)</th>
<th>diff (a-b)</th>
<th>sample data: pop. mean difference</th>
<th>(a-b) = μ</th>
</tr>
</thead>
</table>
| ≥ | ≥ | ex. (-3 mmHg) | ↑ n=8000 | ex. (+1 mmHg) | ↓

Mean \(\bar{y} = -1 \text{ mmHg} \)

\[Z = \frac{\text{signal}}{\text{noise}} = \frac{(\text{obs. diff.)} - (\text{expected diff. if H₀ true})}{(\text{SE of diff. if H₀ true})} = \frac{-1 \text{ mmHg} - 0 \text{ mmHg}}{a/2 \text{ mmHg}} = -4.5 \]

*SE of diff = \(\sqrt{\frac{\text{SE}(\bar{y})}{n}} = \frac{20 \text{ mmHg}}{\sqrt{8000}} = 0.22 \text{ mmHg} \)
long run histogram of \bar{y} if H_0 true:

$p \approx 0\%$ so **WAY** stat. sig. but not pract. sig.

\Rightarrow this happened because n was too big!

ex: same situation but pilot study

$\begin{bmatrix} A & B \end{bmatrix}$

$n = 8$

this difference is large in clinical terms

so it is pract. sig., but stat. sig.?

$\mu = -10 \text{ mmHg}$

$s = 20 \text{ mmHg}$

$z = \frac{-10 \text{ mmHg}}{10 \text{ mmHg}} = -1.4 \Rightarrow P \approx 16\% \Rightarrow \Rightarrow \Rightarrow$ so not stat. sig.

$*SE(\bar{y}) = \frac{s}{\sqrt{n}} = \frac{20 \text{ mmHg}}{\sqrt{8}} \approx 7 \text{ mmHg}$

\Rightarrow this happened because n

was too small!

Design idea: choose n so that stat. sig. $=$ pract. sig.