Chapter 3

Rational functions

3.1 Rational functions

Textbook section 3.4–3.5

3.1.1 Basic rational functions and asymptotes

As a first step towards understanding the behavior of rational functions, let’s study functions of the kind \(f(x) = x^{-n} \), or in other words,

As in the case of power functions, we have two different kinds of behavior depending on whether the power \(n \) is even or is odd:

As in the previous case as well, for even powers the function \(f(x) \) is even, and for odd powers the
function $f(x)$ is odd:

3.1.2 Other basic rational functions

We saw that the graphs of some functions can be deduced from the graphs of basic functions by various geometrical transformations, such as reflections, vertical and horizontal translations. The same applies here.

Example 1: $f(x) = -\frac{1}{x}$

Example 2: $f(x) = \frac{1}{x+3}$
Example 3: \(f(x) = 3 + \frac{1}{x} \)

Example 4: \(f(x) = -\frac{1}{(x-2)^2} \)

3.1.3 General properties of rational functions

Definitions:

Domain of definition:

Asymptotes vs. excluded points: In most situations, an asymptote occurs when the denominator of the rational function goes to zero. For example, as seen earlier,
However, it may happen that the asymptote is “canceled out” by a root in the numerator. This situation is easy to determine from the factored form of \(f(x) \):

Example 1: \(f(x) = \frac{x^2 - 9}{x + 3} \)

In that case, the graph of \(f(x) \) is the same as the graph of the simplified function *except* that the root/asymptote point has to be removed from the graph since it is not part of the domain of definition. Here,

Example 2: \(f(x) = \frac{x - 2}{x^2 - x - 2} \)
3.1.4 Studying rational functions using signs tables

Signs tables are extremely useful tools for studying rational functions. They are used in nearly exactly the same way as for polynomial functions:

- Cast the function in a fully factored form, for both the numerator and the denominator. Simplify as needed, but remember the excluded points if there are some.
- Draw the table
- Write all the factors vertically on the left, including both the numerator and the denominator.
- Write all the points where either the numerator or the denominator goes to 0 on the top, in the correct order. Draw vertical lines below each of them.
- Determine and write the sign of each factor; write zeros where there is a root, and an infinity sign where there is an asymptote.
- Multiply the signs in each interval to determine the sign of the function.

Example: \(f(x) = \frac{x^2 - 1}{x^2 - 2x - 12} \)

3.1.5 The behavior of rational functions near an asymptote

The behavior of rational functions near an asymptote can be obtained in two completely different ways.

-
-

Example: \(f(x) = \frac{x^2 - 1}{2x^2 - 4x - 12} \)

3.1.6 The behavior of rational functions for large \(|x|\)

In order to study the behavior of rational functions for large \(|x|\) (that is, \(x\) going to \(+\infty\) or \(x\) going to \(-\infty\)), we use the property learned in the previous chapter about the behavior of polynomial functions for large \(|x|\):

As a result, for rational functions,

Note 1: As in the previous chapter, the behavior for large \(|x|\) can easily be used to check the signs table.

Note 2: It is important to realize that not all rational functions go to 0 as \(x\) goes to \(+\infty\) or \(x\) goes to \(-\infty\).
3.1. RATIONAL FUNCTIONS

Example 1: \(f(x) = \frac{x-1}{x^2+x-2} \)

Example 2: \(f(x) = \frac{x^2-1}{2x^2+x-2}, \ g(x) = \frac{x^3-1}{2x^2+x-2} \)
3.1.7 Combining all the information in one plot...

Now that we have some basic tools, we can use them to draw fairly accurate graphs of any rational function!

Example 1: Sketch the function \(f(x) = \frac{x}{x^2+4} \)

Example 2: Sketch the function \(f(x) = \frac{x^2-2x+1}{x^3+2x^2-3x} \)
3.1.8 Example of use of rational functions

We all intuitively know that a square is the shape which minimizes the contour length of a rectangle of a given area. But why is that?