Chapter 5

Exponentials and logarithms

5.1 General Exponential functions

Textbook Chapter 4.3

5.1.1 Definition of an exponential functions

Definition:

An exponential function is any function of the kind \(f(x) = a^x \) where \(a > 0 \)

Note: Do not mix up power and exponential functions!

- For power functions: \(x^a \)
- For exponential functions: \(a^x \)

While we may not be used to thinking of exponents as non-integers, or non-rational numbers, think of the following construction for the function \(f(x) = 2^x \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(2^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>(2^{-3} = \frac{1}{2^3} = \frac{1}{8})</td>
</tr>
<tr>
<td>-2</td>
<td>(2^{-2} = \frac{1}{2^2} = \frac{1}{4})</td>
</tr>
<tr>
<td>-1</td>
<td>(2^{-1} = \frac{1}{2})</td>
</tr>
<tr>
<td>0</td>
<td>(2^0 = 1)</td>
</tr>
<tr>
<td>1</td>
<td>(2^1 = 2)</td>
</tr>
<tr>
<td>2</td>
<td>(2^2 = 4)</td>
</tr>
<tr>
<td>3</td>
<td>(2^3 = 8)</td>
</tr>
</tbody>
</table>

Plot in graph and join the dots.
Now we can "read" the value of 2^x for any x.

Example:

$2^\pi \approx \frac{1}{10}$ from the graph (0.113314 is the real value).

$2^e \approx 2.71\ldots$

$e \approx 2.71\ldots$.

Manipulation of Exponential Functions: The rules for manipulating these functions are the same as the rules for manipulating powers. Given an exponential function in base a

- $a^0 = 1$ for all a
- $a^1 = a$ for any a
- $a^{x+y} = a^x a^y$
- $a^{-x} = \frac{1}{a^x}$
- $a^{x-y} = \frac{a^x}{a^y}$
- $a^{xy} = (a^x)^y = (a^y)^x$

Also, given another exponential function in base b

- $a^x b^x = (ab)^x$
- $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$
- $a^x b^{-x} = a^x \frac{1}{b^x} = \left(\frac{a}{b}\right)^x$

etc...

Examples:

- Simplify: $f(x) = \frac{3^{x+2}}{9}$

 $f(x) = \frac{3^x \cdot 3^2}{9} = \frac{9 \cdot 3^x}{9} = 3^x$
5.1. GENERAL EXPONENTIAL FUNCTIONS

- Simplify \(f(x) = \frac{3^x}{4^x} \)
 \[
 f(x) = \left(\frac{3}{4}\right)^x = \frac{4^x}{4^x} = 1
 \]

- Simplify \(f(x) = 25^x 5^{-x-1} \)
 \[
 f(x) = (5^2)^x 5^{-x-1} = 5^{2x-x-1} = 5^{x-1}
 \]

- Simplify \(f(x) = 2^{2x^3} \)
 \[
 f(x) = (2^2)^x 3^x = 4^x \cdot 3^x = (4 \cdot 3)^x = 12^x
 \]

5.1.2 Graphs of exponential functions

The graph of an exponential function \(f(x) = a^x \) depends on the value of the base \(a \).

Case 1: \(a > 1 \) (typical example: \(f(x) = 2^x \))

Case 2: \(0 < a < 1 \) (typical example: \(f(x) = \left(\frac{1}{2}\right)^x \))

The graph can be found by symmetry:

Indeed, for example \(\left(\frac{1}{2}\right)^x = 2^{-x} \)

\(\rightarrow \) It's the mirror image of \(2^x \) across y-axis
5.1.3 Applications of exponential functions

Exponential functions occur in Nature very commonly in systems where something doubles/triples/quadruples... in time at a regular pace (or equivalently gets divided by two/three/four... at a regular pace).

Example of exponential growth:

Answer:

<table>
<thead>
<tr>
<th>Week</th>
<th>Homework Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>1 s = 2^0 s</td>
</tr>
<tr>
<td>Week 2</td>
<td>2 s = 2^1 s</td>
</tr>
<tr>
<td>Week 3</td>
<td>4 s = 2^2 s</td>
</tr>
<tr>
<td>Week 4</td>
<td>8 s = 2^3 s</td>
</tr>
<tr>
<td>Week 5</td>
<td>16 s = 2^4 s</td>
</tr>
</tbody>
</table>

So, Week n = 2^{n-1} s

But what is 2^{35} s?

2^{35} = 2^{30+5} = 2^{30} \cdot 2^5 = 32 \cdot 2^{30}

2^{30} = (2^{10})^3 = (1024)^3 = (1000)^3 = 10^9

→ 32 billion seconds

\approx 100 years

Exponential growth is colloquially used to mean "very fast growth"
Example of exponential decay: Everyone in the class takes a coin. We all toss the coin together. At every coin toss, the people who get "tail" stop. People who get "head" continue on. Completing the following table and graph we get:

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>12.5</td>
<td>6.25</td>
<td>3.125</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The number of players roughly halve at each toss.

\[P(n) = P_0 \left(\frac{1}{2}\right)^n \]

- This is an exponential function of \(n \).

\(\Rightarrow \) The number of players decays exponentially with \(n \).
Example of exponential decay in nature. Exponential decay often occurs in probabilistic systems where there is some chance of "decay" over a certain timescale. The most common example in Nature is radioactive decay. Many atoms are not "stable" atoms: they can, with a certain probability for a given time period, "decay" into another atom (i.e., change into another element). Some elements, however, are more unstable than others, and decay much more rapidly. This propensity to decay is often measured through a "half-life". By definition, the probability of decay is exactly 1/2 after one half-life. For example:

- The half-life of Carbon 14 (used for radioactive dating) is 5730 years. Carbon 14 decays into Nitrogen 14.
- The half-life of Plutonium 239 (nuclear waste product) is 24,110 years
- The half-life of Iodine 131 (other waste product) is 8 days

The amount of radioactive material left after a certain time is an exponential function of time:

\[
A(t) = A(0) \cdot \left(\frac{1}{2} \right)^{t/T}
\]

where \(A(0)\) = initial amount
\(T\) = the half-life time

Indeed:
\[\begin{align*}
\text{if } t &= T \text{ then } A(T) = A(0) \left(\frac{1}{2} \right)^1 = A(0) \left(\frac{1}{2} \right) = \frac{1}{2} A(0) \\
\text{if } t &= 2T \text{ then } A(2T) = A(0) \left(\frac{1}{2} \right)^2 = A(0) \left(\frac{1}{2} \right) = \frac{1}{4} A(0)
\end{align*}\]

\[\text{etc...}\]

EXAMPLE 1: Suppose you collect pure Carbon 14 in a sealed jar now.

- What percentage of Carbon 14 is left after 5730 years? \(T = 5730\) yrs.

\[A(t) = A(0) \cdot \left(\frac{1}{2} \right)^{t/5730}\]

so \[A(5730) = A(0) \cdot \left(\frac{1}{2} \right)^{5730/5730} = \frac{1}{2} A(0) = \frac{1}{2} \text{ original amount}\]

- What percentage of Carbon 14 is left after 100 years?

\[A(100) = A(0) \left(\frac{1}{2} \right)^{\frac{100}{5730}} = A(0) \cdot 0.989\]

\[\rightarrow \text{ 98.9% left of the original amount}\]

- What percentage of Carbon 14 is left after a 100,000 years?

\[A(100,000) = A(0) \left(\frac{1}{2} \right)^{\frac{100,000}{5730}} = A(0) \cdot 0.0000555\]

\[\rightarrow 0.0000555 \text{ left}\]

EXAMPLE 2: Suppose you find a sealed jar and identify it contains \(x\) percent of Carbon 14. What do you need to do to find when it was sealed as a function of \(x\)?

\[\Rightarrow \text{ we want to find the time } t \text{ such that}\]

\[A(t) = \frac{x}{100} A(0) \rightarrow \text{ amount at } t \text{ is } x \text{ percent of original amount}\]

\[A(0) \left(\frac{1}{2} \right)^{t/5730} = \frac{x}{100} A(0)\]

\[\Rightarrow \frac{t}{5730} = \frac{x}{100} \rightarrow \text{ How do we solve for } t?\]